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Lecture 3:

Mathematical induction.



Mathematical induction

Well-ordering principle: any nonempty set of positive
integers has the smallest element. (Equivalently, any
decreasing sequence of positive integers is finite.)

Induction principle: Let P(n) be an assertion depending on
the positive integer variable n. Suppose that
• P(1) holds,
• whenever P(k) holds, so does P(k + 1).

Then P(n) holds for all positive integers n.

Remarks. The assertion P(1) is called the basis of

induction. The implication P(k) =⇒ P(k + 1) is called
the induction step.

Examples of assertions P(n):

(a) 1 + 2 + · · ·+ n = n(n + 1)/2,
(b) n(n + 1)(n + 2) is divisible by 6,
(c) n = 2p + 3q for some p, q ∈ Z.



Theorem The well-ordering principle implies the
induction principle.

Proof: Let P(n) be an assertion depending on the
positive integer variable n such that P(1) holds and

P(k) implies P(k + 1) for any integer k > 0.

Consider the set S = {n ∈ P : P(n) does not hold}.
Assume that S is not empty. By the well-ordering

principle, the set S has the smallest element m.
Since P(1) holds, m 6= 1 so that m − 1 > 0.

Clearly, m− 1 /∈ S , therefore P(m− 1) holds. But
P(m − 1) =⇒ P(m) so that P(m) holds as well.

The contradiction means that the assumption was

wrong. Thus the set S is empty.



Theorem 1 + 2 + · · ·+ n =
n(n + 1)

2
.

Proof: Let us use the induction principle (on the variable n).

Basis of induction: check the formula for n = 1.

In this case, 1 = 1(1 + 1)/2, which is true.

Induction step: assume that the formula is true for n = m

and derive it for n = m + 1.

Inductive assumption: 1 + 2 + · · ·+m = m(m + 1)/2.
Then

1 + 2 + · · ·+m + (m + 1) =
m(m + 1)

2
+ (m + 1)

= (m + 1)
(m

2
+ 1

)

=
(m + 1)(m + 2)

2
.

By the principle of mathematical induction, the formula holds
for all n ∈ P.



Strong induction principle: Let P(n) be an

assertion depending on a positive integer variable n.
Suppose that P(n) holds whenever P(k) holds for

all k < n. Then P(n) holds for all positive integers
n.

For n = 1, this means that P(1) holds

unconditionally.

For n = 2, this means that P(1) implies P(2).

For n = 3, this means that P(1) and P(2) imply

P(3).

And so on. . .



Strong induction

Theorem Let P(n) be an assertion depending on a

positive integer variable n. Suppose that P(n)
holds whenever P(k) holds for all k < n. Then

P(n) holds for all n ∈ P.

Proof of the theorem: For any n ∈ P we formulate new
assertion Q(n) =“P(k) holds for any positive integer k ≤ n”.
We are going to prove Q(n) by (usual) induction on n.

First of all, Q(1) holds since it is equivalent to P(1). Now
assume that Q(n) holds for some n ∈ P. By hypothesis of
the theorem, Q(n) implies P(n + 1). Moreover, Q(n + 1)
holds if and only if both Q(n) and P(n + 1) hold. Therefore
Q(n) implies Q(n + 1) for all n ∈ P. By the principle of
mathematical induction, Q(n) holds for all n ∈ P.

It remains to notice that Q(n) implies P(n) for all n ∈ P.



Well-ordering and induction

Principle of well-ordering:

The set P is well-ordered, that is, any nonempty subset of P
has a least element.

Principle of mathematical induction:

Let P(n) be an assertion depending on a variable n ∈ P.
Suppose that P(1) holds and P(k) implies P(k + 1) for any
k ∈ P. Then P(n) holds for all n ∈ P.

Induction with a different base:

Let P(n) be an assertion depending on an integer variable n.
Suppose that P(n0) holds for some n0 ∈ Z and P(k) implies
P(k + 1) for any k ≥ n0. Then P(n) holds for all n ≥ n0.

Strong induction: Let P(n) be an assertion depending on a
variable n ∈ P. Suppose that P(n) holds whenever P(k)
holds for all k < n. Then P(n) holds for all n ∈ P.



Inductive definition

The principle of mathematical induction allows to

define mathematical objects inductively (that is,
recursively).

Examples of inductive definitions:

• Power an of a number
Given a real number a, we let a0 = 1 and an = an−1a for any
n ∈ P.

• Factorial n!
We let 0! = 1 and n! = (n − 1)! · n for any n ∈ P.

• Fibonacci numbers F1, F2, . . .
We let F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for any n ≥ 3.



Problem. Let {Fn} be the Fibonacci numbers:

F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for any n ≥ 3.
Prove that (1.5)n−2 ≤ Fn ≤ 2n−1 for all n ≥ 1.

Let us use the strong induction on n. In the case n = 1, we
check the inequalities directly: (1.5)1−2 ≤ F1 = 1 ≤ 21−1.
In the case n = 2, we also check them directly:
(1.5)2−2 ≤ F2 = 1 ≤ 22−1.

Now consider an integer m ≥ 3 and assume that the
inequalities hold for all n < m. In particular, they hold for
n = m − 1 and n = m − 2. Then

Fm = Fm−1 + Fm−2 ≤ 2(m−1)−1 + 2(m−2)−1 = 2m−2 + 2m−3

= 2m−1(1/2 + 1/4) < 2m−1,

Fm = Fm−1 + Fm−2 ≥ (1.5)(m−1)−2 + (1.5)(m−2)−2

= (1.5)m−3+(1.5)m−4 = (1.5)m−2(2/3+4/9) > (1.5)m−2.

The induction is complete.


