MATH 433

Lecture 4:

Applied Algebra

More on greatest common divisor. Prime numbers.

Unique factorisation theorem.

Greatest common divisor

Given positive integers a_1, a_2, \ldots, a_n , the **greatest common divisor** $gcd(a_1, a_2, \ldots, a_n)$ is the largest positive integer that divides a_1, a_2, \ldots, a_n .

Theorem (i) $gcd(a_1, a_2, ..., a_n)$ is the smallest positive integer represented as an integral linear combination of $a_1, a_2, ..., a_n$.

(ii) $gcd(a_1, a_2, ..., a_n)$ is divisible by any other common divisor of $a_1, a_2, ..., a_n$.

Remark. The theorem can be proved in the same way as in the case n=2 (see Lecture 2). Another approach is by induction on n using the fact that $\gcd(a_1,a_2,\ldots,a_n)=\gcd(a_1,\gcd(a_2,\ldots,a_n))$.

Prime numbers

A positive integer p is **prime** if it has exactly two positive divisors, namely, 1 and p.

Examples. 2, 3, 5, 7, 29, 41, 101.

A positive integer n is **composite** if it a product of two strictly smaller positive integers.

Examples.
$$6 = 2 \cdot 3$$
, $16 = 4 \cdot 4$, $125 = 5 \cdot 25$.

Any positive integer is either prime or composite or 1. **Prime factorisation** of a positive integer $n \ge 2$ is a decomposition of n into a product of primes.

Examples. •
$$120 = 12 \cdot 10 = (2 \cdot 6) \cdot (2 \cdot 5)$$

= $(2 \cdot (2 \cdot 3)) \cdot (2 \cdot 5) = 2^3 \cdot 3 \cdot 5$.
• $144 = 12^2 = (2^2 \cdot 3)^2 = 2^4 \cdot 3^2$.

Sieve of Eratosthenes

The **sieve of Eratosthenes** is a method to find all primes from 2 to n:

- (1) Write down all integers from 2 to n.
- (2) Select the smallest integer k that is not selected or crossed out yet.
- (3) Cross out all multiples of k.
- (4) If not all numbers are selected or crossed out, return to step (2).

The prime numbers are those selected in the process.

Unique factorisation theorem

Theorem Any positive integer $n \ge 2$ admits a prime factorisation. This factorisation is unique up to rearranging the factors.

Corollary There are infinitely many prime numbers.

Idea of the proof: Let p_1, p_2, \ldots, p_k be the first k primes. Consider the number $N = p_1 p_2 \ldots p_k + 1$. By construction, this number is not divisible by p_1, p_2, \ldots, p_k . But it does have a prime divisor, due to the theorem.

Problem. Suppose m is a positive integer such that

$$m = 2^4 p_1 p_2 p_3,$$

 $m + 100 = 5q_1 q_2 q_3,$
 $m + 200 = 23r_1 r_2 r_3 r_4,$

where p_i, q_j, r_k are prime numbers and, moreover, $p_i \neq 2$, $q_j \neq 5$, $r_k \neq 23$. Find m.

The prime decomposition of 100 is $2^2 \cdot 5^2$. Since the numbers m + 100 and 100 are divisible by 5, so are their difference m and their sum m + 200.

The prime decomposition of 200 is $2^3 \cdot 5^2$. Since the number m is divisible by $2^4 = 16$, it follows that m + 100 is divisible by $2^2 = 4$ while m + 200 is divisible by $2^3 = 8$.

By the above the prime decomposition of m+200 contains $2^3 \cdot 5 \cdot 23$. As there are only 5 factors in this decomposition, the number m+200 is exactly $2^3 \cdot 5 \cdot 23 = 920$. Then $m+100=820=2^2 \cdot 5 \cdot 41$ and $m=720=2^4 \cdot 3^2 \cdot 5$.

Unique prime factorisation

Theorem Any positive integer $n \ge 2$ admits a prime factorisation. This factorisation is unique up to rearranging the factors.

Ideas of the proof: The **existence** is proved by strong induction on n. It is based on a simple fact: if $p_1p_2 \dots p_s$ is a prime factorisation of k and $q_1q_2 \dots q_t$ is a prime factorisation of k. then $p_1p_2 \dots p_sq_1q_2 \dots q_t$ is a prime factorisation of km.

The **uniqueness** is proved by (normal) induction on the number of prime factors. It is based on a (not so simple) fact: if a prime number p divides a product of primes $q_1q_2 \dots q_t$ then one of the primes q_1, \dots, q_t coincides with p.

Coprime numbers

Positive integers a and b are **relatively prime** (or **coprime**) if gcd(a, b) = 1.

Theorem Suppose that a and b are coprime integers. Then (i) a|bc implies a|c;

(ii) a|c and b|c imply ab|c.

Idea of the proof: Since gcd(a, b) = 1, there are integers m and n such that ma + nb = 1. Then c = mac + nbc.

Corollary 1 If a prime number p divides the product $a_1 a_2 \ldots a_n$, then p divides one of the integers a_1, \ldots, a_n .

Corollary 2 If an integer a is divisible by pairwise coprime integers b_1, b_2, \ldots, b_n , then a is divisible by the product $b_1 b_2 \ldots b_n$.

Let $a = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ and $b = p_1^{m_1} p_2^{m_2} \dots p_k^{m_k}$, where p_1, p_2, \dots, p_k are distinct primes and n_i, m_i are nonnegative integers.

Theorem (i) $ab = p_1^{n_1 + m_1} p_2^{n_2 + m_2} \dots p_k^{n_k + m_k}$.

(ii) a divides b if and only if $n_i \leq m_i$ for i = 1, 2, ..., k. (iii) $gcd(a, b) = p_1^{s_1} p_2^{s_2} ... p_k^{s_k}$, where $s_i = min(n_i, m_i)$.

(iv) $lcm(a, b) = p_1^{t_1} p_2^{t_2} \dots p_k^{t_k}$, where $t_i = max(n_i, m_i)$.

Here lcm(a, b) denotes the **least common** multiple of a and b, that is, the smallest positive integer divisible by both a and b.