Lecture 6:

MATH 433

Applied Algebra

Congruences (continued). Modular arithmetic.

Congruences

Let n be a positive integer. The integers a and b are called **congruent modulo** n if they have the same remainder when divided by n. An equivalent condition is that n divides the difference a - b.

Notation. $a \equiv b \mod n$ or $a \equiv b \pmod n$.

Proposition If $a \equiv b \mod n$ then for any $c \in \mathbb{Z}$,

- (i) $a + cn \equiv b \bmod n$;
- (ii) $a+c\equiv b+c \bmod n$;
- (iii) $ac \equiv bc \mod n$.

More properties of congruences

Proposition If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then (i) $a + b \equiv a' + b' \mod n$; (ii) $a - b \equiv a' - b' \mod n$; (iii) $ab \equiv a'b' \mod n$.

Proof: Since $a \equiv a' \bmod n$ and $b \equiv b' \bmod n$, the number n divides a - a' and b - b', i.e., a - a' = kn and $b - b' = \ell n$, where $k, \ell \in \mathbb{Z}$. Then n also divides

$$(a+b)-(a'+b') = (a-a')+(b-b') = kn+\ell n = (k+\ell)n,$$

$$(a-b)-(a'-b') = (a-a')-(b-b') = kn-\ell n = (k-\ell)n,$$

$$ab-a'b' = ab-ab'+ab'-a'b' = a(b-b')+(a-a')b'$$

$$= a(\ell n) + (kn)b' = (a\ell+kb')n.$$

Primes in arithmetic progressions

Theorem There are infinitely many prime numbers of the form 4n + 3, $n \in \mathbb{Z}$.

Idea of the proof: Let p_1, p_2, \ldots, p_k be primes different from 3 and satisfying $p_i \equiv 3 \mod 4$. Consider the number $N = 4p_1p_2 \ldots p_k + 3$. By construction, N is not divisible by p_1, p_2, \ldots, p_k and 3. On the other hand, N must have a prime divisor $p \equiv 3 \mod 4$.

Theorem (Dirichlet 1837) Suppose a and d are positive integers such that gcd(a, d) = 1. Then the arithmetic progression $a, a + d, a + 2d, \ldots$ contains infinitely many prime numbers.

Divisibility of decimal integers

Let $\overline{d_k d_{k-1} \dots d_3 d_2 d_1}$ be the decimal notation of a positive integer n (0 $\leq d_i \leq$ 9). Then

$$n = d_1 + 10d_2 + 10^2d_3 + \cdots + 10^{k-2}d_{k-1} + 10^{k-1}d_k.$$

Proposition 1 The integer n is divisible by 2, 5 or 10 if and only if the last digit d_1 is divisible by the same number.

Proposition 2 The integer n is divisible by 4, 20, 25, 50 or 100 if and only if $\overline{d_2d_1}$ is divisible by the same number.

Proposition 3 The integer n is divisible by 3 or 9 if and only if the sum of its digits $d_k + \cdots + d_2 + d_1$ is divisible by the same number.

Proposition 4 The integer n is divisible by 11 if and only if the alternating sum of its digits $(-1)^{k-1}d_k + \cdots + d_3 - d_2 + d_1$ is divisible by 11.

Hint: $10^m \equiv 1 \mod 9$, $10^m \equiv 1 \mod 3$, $10^m \equiv (-1)^m \mod 11$.

Problem. Determine the last digit of 7^{2019} .

The last digit is the remainder under division by 10. We have $7^1 \equiv 7 \mod 10$ and $7^2 = 49 \equiv 9 \mod 10$. Then

$$7^3 = 7^2 \cdot 7 \equiv 9 \cdot 7 = 63 \equiv 3 \pmod{10}$$
.

Further,

$$7^4 = 7^3 \cdot 7 \equiv 3 \cdot 7 = 21 \equiv 1 \pmod{10}$$
.

Now it follows that $7^{n+4} \equiv 7^n \mod 10$ for all $n \ge 1$. Therefore the last digits of the numbers $7^1, 7^2, 7^3, \ldots, 7^n, \ldots$ form a periodic sequence with period 4. Since $2019 \equiv 3 \mod 4$, the last digit of 7^{2019} is the same as the last digit of 7^3 , which is 3.

Problem. When the number $14^7 \cdot 25^{30} \cdot 40^{12}$ is written out, how many consecutive zeroes are there at the right-hand end?

The number of consecutive zeroes at the right-hand end is the exponent of the largest power of 10 that divides our number.

As follows from the Unique Factorisation Theorem, a positive integer A divides another positive integer B if and only if the prime factorisation of A is part of the prime factorisation of B.

The prime factorisation of the given number is $14^7 \cdot 25^{30} \cdot 40^{12} = (2 \cdot 7)^7 \cdot (5^2)^{30} \cdot (2^3 \cdot 5)^{12} = 2^{43} \cdot 5^{72} \cdot 7^7$.

For any integer $n \ge 1$ the prime factorisation of 10^n is $2^n \cdot 5^n$.

Hence 10^n divides the given number if $n \le 43$ and $n \le 72$. The largest number with this property is 43. Thus there are 43 zeroes at the right-hand end.

Congruence classes

Given an integer a, the **congruence class of** a **modulo** n is the set of all integers congruent to a modulo n.

Notation. $[a]_n$ or simply [a]. Also denoted $a + n\mathbb{Z}$ as $[a]_n = \{a + nk : k \in \mathbb{Z}\}.$

Examples. $[0]_2$ is the set of even integers, $[1]_2$ is the set of odd integers, $[2]_4$ is the set of even integers not divisible by 4.

If n divides a positive integer m, then every congruence class modulo n is the union of m/n congruence classes modulo m. For example, $[2]_4 = [2]_8 \cup [6]_8$.

The congruence class $[0]_n$ is called the **zero congruence** class. It consists of the integers divisible by n.

The set of all congruence classes modulo n is denoted \mathbb{Z}_n . It consists of n elements $[0]_n, [1]_n, [2]_n, \ldots, [n-1]_n$.

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_n for some $n \geq 1$. The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers a and b, we let

$$[a]_n + [b]_n = [a+b]_n,$$

 $[a]_n - [b]_n = [a-b]_n,$
 $[a]_n \times [b]_n = [ab]_n.$

Theorem The arithmetic operations on \mathbb{Z}_n are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.

Proof: Let a' be another representative of $[a]_n$ and b' be another representative of $[b]_n$. Then $a' \equiv a \mod n$ and $b' \equiv b \mod n$. According to a previously proved proposition, this implies $a' + b' \equiv a + b \mod n$, $a' - b' \equiv a - b \mod n$ and $a'b' \equiv ab \mod n$. In other words, $[a' + b']_n = [a + b]_n$, $[a' - b']_n = [a - b]_n$ and $[a'b']_n = [ab]_n$.

Invertible congruence classes

We say that a congruence class $[a]_n$ is **invertible** (or the integer a is **invertible modulo** n) if there exists a congruence class $[b]_n$ such that $[a]_n[b]_n = [1]_n$. If this is the case, then $[b]_n$ is called the **inverse** of $[a]_n$ and denoted $[a]_n^{-1}$.

The set of all invertible congruence classes in \mathbb{Z}_n is denoted G_n or \mathbb{Z}_n^* .

A nonzero congruence class $[a]_n$ is called a **zero-divisor** if $[a]_n[b]_n = [0]_n$ for some $[b]_n \neq [0]_n$.

Examples. • In \mathbb{Z}_6 , the congruence classes $[1]_6$ and $[5]_6$ are invertible since $[1]_n^2 = [5]_6^2 = [1]_6$. The classes $[2]_6$, $[3]_6$, and $[4]_6$ are zero-divisors since $[2]_6[3]_6 = [4]_6[3]_6 = [0]_6$.

• In \mathbb{Z}_7 , all nonzero congruence classes are invertible since $[1]_7^2 = [2]_7[4]_7 = [3]_7[5]_7 = [6]_7^2 = [1]_7$.