MATH 433

Applied Algebra

Invertible congruence classes.

Lecture 7:

Congruence classes

Given an integer a, the **congruence class of** a **modulo** n is the set of all integers congruent to a modulo n.

Notation. $[a]_n$ or simply [a]. Also denoted $a + n\mathbb{Z}$ as $[a]_n = \{a + nk : k \in \mathbb{Z}\}.$

For any integers a and b, the congruence classes $[a]_n$ and $[b]_n$ either coincide, or else they are disjoint.

The set of all congruence classes modulo n is denoted \mathbb{Z}_n . It consists of n elements $[0]_n, [1]_n, [2]_n, \ldots, [n-1]_n$, which form a partition of the set \mathbb{Z} .

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_n for some $n \geq 1$. The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers a and b, we let

$$[a]_n + [b]_n = [a+b]_n,$$

 $[a]_n - [b]_n = [a-b]_n,$
 $[a]_n \times [b]_n = [ab]_n.$

Theorem The arithmetic operations on \mathbb{Z}_n are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.

Invertible congruence classes

We say that a congruence class $[a]_n$ is **invertible** (or the integer a is **invertible modulo** n) if there exists a congruence class $[b]_n$ such that $[a]_n[b]_n = [1]_n$. If this is the case, then $[b]_n$ is called the **inverse** of $[a]_n$ and denoted $[a]_n^{-1}$. Also, we say that b is the (multiplicative) **inverse of** a **modulo** n.

The set of all invertible congruence classes in \mathbb{Z}_n is denoted G_n or \mathbb{Z}_n^* .

A nonzero congruence class $[a]_n$ is called a **zero-divisor** if $[a]_n[b]_n = [0]_n$ for some $[b]_n \neq [0]_n$.

Properties of invertible congruence classes

Theorem (i) If $[a]_n$ is invertible, then $[a]_n^{-1}$ is also invertible and $([a]_n^{-1})^{-1} = [a]_n$.

- (ii) The inverse $\begin{bmatrix} a \end{bmatrix}_n^{-1}$ is always unique.
- (iii) If $[a]_n$ and $[b]_n$ are invertible, then the product $[a]_n[b]_n$ is also invertible and $([a]_n[b]_n)^{-1} = [a]_n^{-1}[b]_n^{-1}$.
- (iv) Zero-divisors are not invertible.

Proof: (i) Let $[b]_n = [a]_n^{-1}$. Then $[b]_n [a]_n = [a]_n [b]_n = [1]_n$, which means that $[a]_n = [b]_n^{-1}$.

- (ii) Suppose that $[b]_n$ and $[b']_n$ are both inverses of $[a]_n$. Then $[b]_n = [b]_n[1]_n = [b]_n[a]_n[b']_n = [1]_n[b']_n = [b']_n$.
- (iii) We only need to show that $([a]_n[b]_n)([a]_n^{-1}[b]_n^{-1}) = [1]_n$. Indeed, $([a]_n[b]_n)([a]_n^{-1}[b]_n^{-1}) = [a]_n[a]_n^{-1} \cdot [b]_n[b]_n^{-1} = [1]_n[1]_n = [1]_n$.
 - (iv) If $[a]_n$ is invertible and $[a]_n[b]_n = [0]_n$, then $[b]_n = [1]_n [b]_n = [a]_n^{-1} [a]_n [b]_n = [a]_n^{-1} [0]_n = [0]_n.$ Therefore $[a]_n$ cannot be a zero-divisor.

Theorem A nonzero congruence class $[a]_n$ is invertible if and only if gcd(a, n) = 1. Otherwise $[a]_n$ is a zero-divisor.

Proof: Let $d = \gcd(a, n)$. If d > 1 then n/d and a/d are integers, $\lfloor n/d \rfloor_n \neq \lfloor 0 \rfloor_n$, and $\lfloor a \rfloor_n \lfloor n/d \rfloor_n = \lfloor an/d \rfloor_n = \lfloor a/d \rfloor_n \lfloor n \rfloor_n = \lfloor a/d \rfloor_n \lfloor 0 \rfloor_n = \lfloor 0 \rfloor_n$. Hence $\lfloor a \rfloor_n$ is a zero-divisor.

Now consider the case $\gcd(a,n)=1$. In this case 1 is an integral linear combination of a and n: ma+kn=1 for some $m,k\in\mathbb{Z}$. Then $[1]_n=[ma+kn]_n=[ma]_n=[m]_n[a]_n$. Thus $[a]_n$ is invertible and $[a]_n^{-1}=[m]_n$.

Problem. Find the inverse of 23 modulo 107.

Numbers 23 and 107 are coprime (they are actually prime). We use the matrix method to represent 1 as an integral linear combination of these numbers.

$$\begin{pmatrix} 1 & 0 & 107 \\ 0 & 1 & 23 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & 15 \\ 0 & 1 & 23 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & 15 \\ -1 & 5 & 8 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 2 & -9 & 7 \\ -1 & 5 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -9 & 7 \\ -3 & 14 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 23 & -107 & 0 \\ -3 & 14 & 1 \end{pmatrix}$$

From the 2nd row of the last matrix we read off that $(-3) \cdot 107 + 14 \cdot 23 = 1$. It follows that $[1]_{107} = [(-3) \cdot 107 + 14 \cdot 23]_{107} = [14 \cdot 23]_{107} = [14]_{107}[23]_{107}$. Thus $[23]_{107}^{-1} = [14]_{107}$.

Problem. Find all integer solutions of the equation 107m + 23n = 1.

From the solution of the previous problem we get that

$$(-3) \cdot 107 + 14 \cdot 23 = 1$$
,
 $23 \cdot 107 - 107 \cdot 23 = 0$.

It follows that we have solutions m = -3 + 23k, n = 14 - 107k for any $k \in \mathbb{Z}$.

These are all integer solutions!

Indeed, for any integer solution of the equation, the number n is the inverse of 23 modulo 107. Since the inverse congruence class $[23]_{107}^{-1} = [14]_{107}$ is unique, it follows that n = 14 - 107k for some $k \in \mathbb{Z}$. Then m = -3 + 23k for the same k.