MATH 433
Applied Algebra Lecture 17:
Cycle decomposition.
Order of a permutation.

Permutations

Let X be a finite set. A permutation of X is a bijection from X to itself.
Two-row notation. $\pi=\left(\begin{array}{cccc}a & b & c & \cdots \\ \pi(a) & \pi(b) & \pi(c) & \cdots\end{array}\right)$,
where a, b, c, \ldots is a list of all elements in the domain of π.
The set of all permutations of a finite set X is called the symmetric group on X. Notation: $S_{X}, \Sigma_{X}, \operatorname{Sym}(X)$.
The set of all permutations of $\{1,2, \ldots, n\}$ is called the symmetric group on n symbols and denoted $S(n)$ or S_{n}.

Given two permutations π and σ, the composition $\pi \sigma$, defined by $\pi \sigma(x)=\pi(\sigma(x))$, is called the product of these permutations. In general, $\pi \sigma \neq \sigma \pi$, i.e., multiplication of permutations is not commutative. However it is associative: $\pi(\sigma \tau)=(\pi \sigma) \tau$.

Cycles

A permutation π of a set X is called a cycle (or cyclic) of length r if there exist r distinct elements $x_{1}, x_{2}, \ldots, x_{r} \in X$ such that

$$
\pi\left(x_{1}\right)=x_{2}, \pi\left(x_{2}\right)=x_{3}, \ldots, \pi\left(x_{r-1}\right)=x_{r}, \pi\left(x_{r}\right)=x_{1},
$$

and $\pi(x)=x$ for any other $x \in X$.
Notation. $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{r}\end{array}\right)$.
The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a transposition. In the case $S=\{1,2, \ldots, n\}$, we define an adjacent transposition as a transposition of the form ($k k+1$).

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{r}\end{array}\right)$, then $\pi^{-1}=\left(\begin{array}{llll}x_{r} & x_{r-1} & \ldots & x_{2}\end{array} x_{1}\right)$.

Cycle decomposition

Let π be a permutation of X. We say that π moves an element $x \in X$ if $\pi(x) \neq x$. Otherwise π fixes x.
Two permutations π and σ are called disjoint if the set of elements moved by π is disjoint from the set of elements moved by σ.

Theorem If π and σ are disjoint permutations in S_{X}, then they commute: $\pi \sigma=\sigma \pi$.
Idea of the proof: If π moves an element x, then it also moves $\pi(x)$. Hence σ fixes both so that $\pi \sigma(x)=\sigma \pi(x)=\pi(x)$.

Theorem Any permutation can be expressed as a product of disjoint cycles. This cycle decomposition is unique up to rearrangement of the cycles involved.
Idea of the proof: Given $\pi \in S_{X}$, for any $x \in X$ consider a sequence $x_{0}=x, x_{1}, x_{2}, \ldots$, where $x_{m+1}=\pi\left(x_{m}\right)$. Let r be the least index such that $x_{r}=x_{k}$ for some $k<r$. Then $k=0$.

Examples

$$
\begin{aligned}
& \text { - }\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8
\end{array}\right) \\
& =(1249375)(612811)(10) \\
& =(1249375)(612811) \text {. } \\
& \text { - (1 2)(2 3)(34)(45)(56)=(12345). } \\
& \text { - }(12)(13)(14)(15)=\left(\begin{array}{lll}
1 & 5 & 4 \\
3
\end{array}\right) \text {. } \\
& \text { - }(243)(12)(234)=(14) \text {. }
\end{aligned}
$$

Powers of a permutation

Let π be a permutation. The positive powers of π are defined inductively:

$$
\pi^{1}=\pi \quad \text { and } \quad \pi^{k+1}=\pi \cdot \pi^{k} \quad \text { for every integer } \quad k \geq 1
$$

The negative powers of π are defined as the positive powers of its inverse: $\pi^{-k}=\left(\pi^{-1}\right)^{k}$ for every positive integer k.
Finally, we set $\pi^{0}=\mathrm{id}$.
Theorem Let π be a permutation and $r, s \in \mathbb{Z}$. Then
(i) $\pi^{r} \pi^{s}=\pi^{r+s}$,
(ii) $\left(\pi^{r}\right)^{s}=\pi^{r s}$,
(iii) $\left(\pi^{r}\right)^{-1}=\pi^{-r}$.

Remark. The theorem is proved in the same way as the analogous statement on invertible congruence classes.

Order of a permutation

Theorem Let π be a permutation. Then there is a positive integer m such that $\pi^{m}=\mathrm{id}$.
Proof: Consider the list of powers: $\pi, \pi^{2}, \pi^{3}, \ldots$. Since there are only finitely many permutations of any finite set, there must be repetitions within the list. Assume that $\pi^{r}=\pi^{s}$ for some $0<r<s$. Then $\pi^{s-r}=\pi^{s} \pi^{-r}=\pi^{s}\left(\pi^{r}\right)^{-1}=\mathrm{id}$.

The order of a permutation π, denoted $o(\pi)$, is defined as the smallest positive integer m such that $\pi^{m}=\mathrm{id}$.

Theorem Let π be a permutation of order m. Then $\pi^{r}=\pi^{s}$ if and only if $r \equiv s \bmod m$. In particular, $\pi^{r}=\mathrm{id}$ if and only if the order m divides r.

Theorem Let π be a cyclic permutation. Then the order $o(\pi)$ is the length of the cycle π.

Examples. • $\pi=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right.$ 5).

$$
\begin{aligned}
& \pi^{2}=\left(\begin{array}{lllll}
1 & 3 & 5 & 2 & 4
\end{array}\right), \pi^{3}=\left(\begin{array}{lllll}
1 & 4 & 2 & 5 & 3
\end{array}\right), \\
& \pi^{4}=\left(\begin{array}{lllll}
1 & 5 & 4 & 3 & 2
\end{array}\right), \pi^{5}=\mathrm{id} \\
& \Longrightarrow o(\pi)=5
\end{aligned}
$$

- $\sigma=\left(\begin{array}{ll}1 & 23456\end{array}\right)$.
$\sigma^{2}=(135)(246), \sigma^{3}=(14)(25)(36)$,
$\sigma^{4}=(153)(264), \sigma^{5}=(165432), \sigma^{6}=\mathrm{id}$.
$\Longrightarrow o(\sigma)=6$.
- $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)$.
$\tau^{2}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right), \tau^{3}=\left(\begin{array}{ll}4 & 5\end{array}\right), \tau^{4}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$,
$\tau^{5}=\left(\begin{array}{ll}1 & 3\end{array}\right)(45), \tau^{6}=\mathrm{id}$.
$\Longrightarrow o(\tau)=6$.

Lemma 1 Let π and σ be two commuting permutations: $\pi \sigma=\sigma \pi$. Then
(i) the powers π^{r} and σ^{s} commute for all $r, s \in \mathbb{Z}$,
(ii) $(\pi \sigma)^{r}=\pi^{r} \sigma^{r}$ for all $r \in \mathbb{Z}$,

Lemma 2 Let π and σ be disjoint permutations in $S(n)$.
Then (i) they commute: $\pi \sigma=\sigma \pi$,
(ii) $(\pi \sigma)^{r}=$ id if and only if $\pi^{r}=\sigma^{r}=$ id,
(iii) $o(\pi \sigma)=\operatorname{lcm}(o(\pi), o(\sigma))$.

Idea of the proof: The set $\{1,2, \ldots, n\}$ splits into 3 subsets: elements moved by π, elements moved by σ, and elements fixed by both π and σ. All three sets are invariant under π and σ. It follows that π^{r} and σ^{r} are also disjoint.

Theorem Let $\pi \in S(n)$ and suppose that $\pi=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ is a decomposition of π as a product of disjoint cycles. Then the order of π is the least common multiple of the lengths of cycles $\sigma_{1}, \ldots, \sigma_{k}$.

