MATH 433
Applied Algebra

Lecture 19:
 Alternating group.
 Abstract groups.

Sign of a permutation

Theorem 1 For any $n \geq 2$ there exists a unique function sgn : $S(n) \rightarrow\{-1,1\}$ such that

- $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for all $\pi, \sigma \in S(n)$,
- $\operatorname{sgn}(\tau)=-1$ for any transposition τ in $S(n)$.

A permutation π is called even if it is a product of an even number of transpositions, and odd if it is a product of an odd number of transpositions. It turns out that π is even if $\operatorname{sgn}(\pi)=1$ and odd if $\operatorname{sgn}(\pi)=-1$.

Theorem 2 (i) $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S(n)$.
(ii) $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$ for any $\pi \in S(n)$.
(iii) $\operatorname{sgn}(\mathrm{id})=1$.
(iv) $\operatorname{sgn}(\tau)=-1$ for any transposition τ.
(v) $\operatorname{sgn}(\sigma)=(-1)^{r-1}$ for any cycle σ of length r.

Alternating group

Given an integer $n \geq 2$, the alternating group on n symbols, denoted A_{n} or $A(n)$, is the set of all even permutations in the symmetric group $S(n)$.
Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi \sigma$ is also in $A(n)$.
(ii) The identity function id is in $A(n)$.
(iii) For any permutation $\pi \in A(n)$, the inverse π^{-1} is in $A(n)$.

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group $A(n)$ has $n!/ 2$ elements.
Proof: Consider the function $F: A(n) \rightarrow S(n) \backslash A(n)$ given by $F(\pi)=(12) \pi$. One can observe that F is bijective. It follows that the sets $A(n)$ and $S(n) \backslash A(n)$ have the same number of elements.

Examples. - The alternating group $A(3)$ has 3 elements: the identity function and two cycles of length 3, (1 2 3) and (1 32).

- The alternating group $A(4)$ has 12 elements of the following cycle shapes: id, (123), and (1 2) (3 4).
- The alternating group $A(5)$ has 60 elements of the following cycle shapes: id, (1 23), (12)(34), and (1 2345).

Abstract groups

Definition. A group is a set G, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse) for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

Basic examples. - Real numbers \mathbb{R} with addition.
(G1) $x, y \in \mathbb{R} \Longrightarrow x+y \in \mathbb{R}$
(G2) $(x+y)+z=x+(y+z)$
(G3) the identity element is 0 as $x+0=0+x=x$
(G4) the inverse of x is $-x$ as $x+(-x)=(-x)+x=0$
(G5) $x+y=y+x$

- Nonzero real numbers $\mathbb{R} \backslash\{0\}$ with multiplication.
(G1) $x \neq 0$ and $y \neq 0 \Longrightarrow x y \neq 0$
(G2) $(x y) z=x(y z)$
(G3) the identity element is 1 as $x 1=1 x=x$
(G4) the inverse of x is x^{-1} as $x x^{-1}=x^{-1} x=1$
(G5) $x y=y x$

The two basic examples give rise to two kinds of notation for a general group $(G, *)$.

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- $a * b$ is denoted $a b$,
- the identity element is denoted 1 ,
- the inverse of g is denoted g^{-1}.

Additive notation: We think of the group operation $*$ as some kind of addition, namely,

- $a * b$ is denoted $a+b$,
- the identity element is denoted 0 ,
- the inverse of g is denoted $-g$.

Remark. Default notation is multiplicative (but the identity element may be denoted e or id or 1_{G}). The additive notation is used only for commutative groups.

