Applied Algebra

Lecture 19: Alternating group. Abstract groups.

MATH 433

Sign of a permutation

Theorem 1 For any $n \ge 2$ there exists a unique function $\operatorname{sgn}: \mathcal{S}(n) \to \{-1,1\}$ such that

- $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi)\operatorname{sgn}(\sigma)$ for all $\pi, \sigma \in S(n)$,
- $sgn(\tau) = -1$ for any transposition τ in S(n).

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions. It turns out that π is even if $\operatorname{sgn}(\pi) = 1$ and odd if $\operatorname{sgn}(\pi) = -1$.

Theorem 2 (i) $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi)\operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S(n)$. (ii) $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S(n)$. (iii) $\operatorname{sgn}(\operatorname{id}) = 1$.

(iv) $sgn(\tau) = -1$ for any transposition τ .

(v) $\operatorname{sgn}(\sigma) = (-1)^{r-1}$ for any cycle σ of length r.

Alternating group

Given an integer $n \ge 2$, the **alternating group** on n symbols, denoted A_n or A(n), is the set of all even permutations in the symmetric group S(n).

Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi\sigma$ is also in A(n).

- (ii) The identity function id is in A(n).
- (iii) For any permutation $\pi \in A(n)$, the inverse π^{-1} is in A(n).

In other words, the product of even permutations is even, the identity function is an even permutation, and the inverse of an even permutation is even.

Theorem The alternating group A(n) has n!/2 elements.

Proof: Consider the function $F:A(n)\to S(n)\setminus A(n)$ given by $F(\pi)=(1\ 2)\pi$. One can observe that F is bijective. It follows that the sets A(n) and $S(n)\setminus A(n)$ have the same number of elements.

Examples. • The alternating group A(3) has 3 elements: the identity function and two cycles of length 3, $(1\ 2\ 3)$ and $(1\ 3\ 2)$.

- The alternating group A(4) has 12 elements of the following **cycle shapes**: id, $(1\ 2\ 3)$, and $(1\ 2)(3\ 4)$.
- The alternating group A(5) has 60 elements of the following cycle shapes: id, $(1\ 2\ 3)$, $(1\ 2)(3\ 4)$, and $(1\ 2\ 3\ 4\ 5)$.

Abstract groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g*h is an element of G;

(G2: associativity)

(g*h)*k = g*(h*k) for all $g,h,k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Basic examples. ullet Real numbers $\mathbb R$ with addition.

(G1)
$$x, y \in \mathbb{R} \implies x + y \in \mathbb{R}$$

(G2) $(x + y) + z = x + (y + z)$
(G3) the identity element is 0 as $x + 0 = 0 + x = x$

- (G4) the inverse of x is -x as x + (-x) = (-x) + x = 0(G5) x + y = y + x
- Nonzero real numbers $\mathbb{R} \setminus \{0\}$ with multiplication.

(G1)
$$x \neq 0$$
 and $y \neq 0 \implies xy \neq 0$

$$(G2) (xy)z = x(yz)$$

(G3) the identity element is 1 as
$$x1 = 1x = x$$

(G4) the inverse of
$$x$$
 is x^{-1} as $xx^{-1} = x^{-1}x = 1$
(G5) $xy = yx$

The two basic examples give rise to two kinds of notation for a general group (G,*).

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- a * b is denoted ab,
- the identity element is denoted 1,
- the inverse of g is denoted g^{-1} .

Additive notation: We think of the group operation * as some kind of addition, namely,

- a * b is denoted a + b,
- ullet the identity element is denoted 0,
- the inverse of g is denoted -g.

Remark. Default notation is multiplicative (but the identity element may be denoted e or id or 1_G). The additive notation is used only for commutative groups.