MATH 433
Applied Algebra

Lecture 20:
Abstract groups (continued).



Abstract groups

Definition. A group is a set G, together with a binary
operation x, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g* h is an element of G;
(G2: associativity)

(gxh)xk=g=x(hxk) forall g,h ke G,

(G3: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall ge G;

(G4: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg=ce.

The group (G, ) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) gxh=hxg forall g, heG.



Examples: numbers

e Real numbers R with addition.

e Nonzero real numbers R\ {0} with
multiplication.

e Integers Z with addition.

(Gl)a,beZ = a+beZ

(G2) (a+b)+c=a+(b+¢)

(G3) the identity elementis0as a+0=0+a=a and
0€Z

(G4) the inverse of a € Z is —a as
at+(—a)=(—-a)+a=0 and —acZ
(G5)a+b=b+a



Examples: modular arithmetic

e The set 7Z, of congruence classes modulo n with
addition.

(G1) [a],[b] € Z, = [a] + [b] =[a+ b] € Z,

(G2) ([a] + [b]) + [c] = [a+ b+ c] = [a] + ([6] + [c])

(G3) the identity element is [0] as [a] 4+ [0] = [0] + [a] = [a]
(G4) the inverse of [a] is [—a] as [a] +[—a] = [—a] + [a] = [0]
(G5) [a] + [b] = [a + b] = [b] + [4]



Examples: modular arithmetic

e The set G, of invertible congruence classes
modulo n with multiplication.

A congruence class [a], € Z, belongs to G, if
gcd(a, n) = 1.

(G1) [a]n, [b]n € G» = gcd(a, n) = ged(b, n) =1
— gcd(ab,n) =1 = [a],[b], = [ab], € G,

G2) ([a][b])[e] = [abe] = [a]([b][c])

G3) the identity element is [1] as [a][1] = [1][a] = [4]
G4) the inverse of [a] is [a] ™! by definition of [a]~!
G5) [a][b] = [ab] = [b][4]

~~



Examples: permutations

e Symmetric group S(n): all permutations on n
elements with composition (= multiplication).

(G1) 7 and o are bijective functions from the set {1,2,..., n}
to itself = sois mo

(G2) (wo)7T and w(oT) applied to k, 1 < k < n, both yield
m(o(7(k)))

(G3) the identity element is id as 7id =id7 ==

(G4) the inverse permutation 7! satisfies 77! = 7717 = id
(conversely, if 7o = om =1id, then o =771)

(G5) fails for n >3 as (12)(23) = (12 3) while

(2

3)(12)=(132)



Examples: permutations

e Alternating group A(n): even permutations on n
elements with composition (= multiplication).

(G1) m and o are even permutations = 7o is even

(G2) (wo)T = w(oT) holds in A(n) as it holds in a larger set
5(n)
(G3) the identity element from S(n), which is id, is an even

permutation, hence it is the identity element in A(n) as well

(G4)  is an even permutation = 7! is also even

(G5) fails for n >4 as (12 3)(234)=(12)(34) while
(234)(123)=(13)(24)



Examples: set theory

e All subsets of a set X with the operation of
symmetric difference: AAB = (A\ B)U (B \ A).

(G1)A,BC X = AABC X.

(G2) (AAB)AC = AA(BAC) consists of those elements of
X that belong to an odd number of sets A, B, C (either to
just one of them or to all three)

(G3) the identity element is the empty set ) since
AAD = OAA = A for any set A

(G4) the inverse of aset A C X is A itself: AAA=1)
(G5) AAB = BAA=(AUB)\ (AN B)



Examples: logic

e Binary logic £ = {"“true”, “false” } with the
operation XOR (eXclusive OR): “x XOR y" means
“either x or y (but not both)".

(G1) “true XOR false” = "false XOR true” = “true”,
“true XOR true” = "false XOR false” = “false”

(G2) “(x XOR y) XOR z"="x XOR (y XOR z)"
(G3) the identity element is “false”

(G4) the inverse of x € L is x itself

(G5)

G5) “x XOR y"="y XOR x"



More examples

e Any vector space V' with addition.

Those axioms of the vector space that involve only addition
are exactly axioms of the commutative group.

e Trivial group (G, *), where G = {e} and
exe=e.

Verification of all axioms is straightforward.

e Positive real numbers with the operation

X *xy = 2xy.

(Gl) x,y >0 = 2xy >0

(G2) (x*xy)*xz=xx%(y*z)=4xyz

(G3) the identity element is 7 as x * e = x means 2ex = x
(G4)

(G5)

the inverse of x is i as x*y:% means 4xy =1
Xky=y%Xx=2xy



Counterexamples

e Real numbers R with multiplication.
0 has no inverse.

e Positive integers with addition.
No identity element.

e Nonnegative integers with addition.
No inverse element for positive numbers.

e Odd permutations with multiplication.
The set is not closed under the operation.

e Integers with subtraction.
The operation is not associative: (a—b) —c=a— (b—c)
only if ¢ =0.

e All subsets of a set X with the operation Ax B=AUB.
The operation is associative and commutative, the empty set
is the identity element. However there is no inverse for a
nonempty set.



Basic properties of groups

e The identity element is unique.

Assume that e; and e, are identity elements. Then
€1 = €16 = 6.

e The inverse element is unique.

Assume that h; and h, are inverses of an element g. Then
h1 = hle = hl(ghz) = (hlg)hz = eh2 = h2.

e (ab)t=btal,

We need to show that (ab)(b~ta™!) = (b ta7!)(a ) =e.
Indeed, (ab)(b~'a™') = ((ab)b~')a~ :( (bb71))a™

= (ae)a~! =aa~! =e. Similarly, (b 1a- )( b) =
b'(a7(ab)) = b7'((a7ta)b) = b~'(eb) = b b =e.

o (a1ay...a,) t=a;l. . .a,'a; "



