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Lecture 20:
Abstract groups (continued).



Abstract groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Examples: numbers

• Real numbers R with addition.

• Nonzero real numbers R \ {0} with
multiplication.

• Integers Z with addition.

(G1) a, b ∈ Z =⇒ a + b ∈ Z

(G2) (a + b) + c = a + (b + c)

(G3) the identity element is 0 as a + 0 = 0 + a = a and
0 ∈ Z

(G4) the inverse of a ∈ Z is −a as
a + (−a) = (−a) + a = 0 and −a ∈ Z

(G5) a + b = b + a



Examples: modular arithmetic

• The set Zn of congruence classes modulo n with

addition.

(G1) [a], [b] ∈ Zn =⇒ [a] + [b] = [a + b] ∈ Zn

(G2) ([a] + [b]) + [c] = [a + b + c] = [a] + ([b] + [c])

(G3) the identity element is [0] as [a] + [0] = [0] + [a] = [a]

(G4) the inverse of [a] is [−a] as [a] + [−a] = [−a] + [a] = [0]

(G5) [a] + [b] = [a + b] = [b] + [a]



Examples: modular arithmetic

• The set Gn of invertible congruence classes

modulo n with multiplication.

A congruence class [a]n ∈ Zn belongs to Gn if

gcd(a, n) = 1.

(G1) [a]n, [b]n ∈ Gn =⇒ gcd(a, n) = gcd(b, n) = 1
=⇒ gcd(ab, n) = 1 =⇒ [a]n[b]n = [ab]n ∈ Gn

(G2) ([a][b])[c] = [abc] = [a]([b][c])

(G3) the identity element is [1] as [a][1] = [1][a] = [a]

(G4) the inverse of [a] is [a]−1 by definition of [a]−1

(G5) [a][b] = [ab] = [b][a]



Examples: permutations

• Symmetric group S(n): all permutations on n

elements with composition (= multiplication).

(G1) π and σ are bijective functions from the set {1, 2, . . . , n}
to itself =⇒ so is πσ

(G2) (πσ)τ and π(στ) applied to k, 1 ≤ k ≤ n, both yield
π(σ(τ(k)))

(G3) the identity element is id as π id = id π = π

(G4) the inverse permutation π
−1 satisfies ππ

−1 = π
−1
π = id

(conversely, if πσ = σπ = id, then σ = π
−1)

(G5) fails for n ≥ 3 as (1 2)(2 3) = (1 2 3) while
(2 3)(1 2) = (1 3 2)



Examples: permutations

• Alternating group A(n): even permutations on n

elements with composition (= multiplication).

(G1) π and σ are even permutations =⇒ πσ is even

(G2) (πσ)τ = π(στ) holds in A(n) as it holds in a larger set
S(n)

(G3) the identity element from S(n), which is id, is an even
permutation, hence it is the identity element in A(n) as well

(G4) π is an even permutation =⇒ π
−1 is also even

(G5) fails for n ≥ 4 as (1 2 3)(2 3 4) = (1 2)(3 4) while
(2 3 4)(1 2 3) = (1 3)(2 4)



Examples: set theory

• All subsets of a set X with the operation of
symmetric difference: A△B = (A \ B) ∪ (B \ A).

(G1) A,B ⊂ X =⇒ A△B ⊂ X .

(G2) (A△B)△C = A△(B△C ) consists of those elements of
X that belong to an odd number of sets A,B ,C (either to
just one of them or to all three)

(G3) the identity element is the empty set ∅ since
A△∅ = ∅△A = A for any set A

(G4) the inverse of a set A ⊂ X is A itself: A△A = ∅

(G5) A△B = B△A = (A ∪ B) \ (A ∩ B)



Examples: logic

• Binary logic L = {“true”, “false”} with the

operation XOR (eXclusive OR): “x XOR y” means
“either x or y (but not both)”.

(G1) “true XOR false” = “false XOR true” = “true”,
“true XOR true” = “false XOR false” = “false”

(G2) “(x XOR y ) XOR z”=“x XOR (y XOR z)”

(G3) the identity element is “false”

(G4) the inverse of x ∈ L is x itself

(G5) “x XOR y”=“y XOR x”



More examples

• Any vector space V with addition.
Those axioms of the vector space that involve only addition
are exactly axioms of the commutative group.

• Trivial group (G , ∗), where G = {e} and
e ∗ e = e.
Verification of all axioms is straightforward.

• Positive real numbers with the operation

x ∗ y = 2xy .

(G1) x , y > 0 =⇒ 2xy > 0
(G2) (x ∗ y ) ∗ z = x ∗ (y ∗ z) = 4xyz
(G3) the identity element is 1

2
as x ∗ e = x means 2ex = x

(G4) the inverse of x is 1

4x
as x ∗ y = 1

2
means 4xy = 1

(G5) x ∗ y = y ∗ x = 2xy



Counterexamples
• Real numbers R with multiplication.
0 has no inverse.

• Positive integers with addition.
No identity element.

• Nonnegative integers with addition.
No inverse element for positive numbers.

• Odd permutations with multiplication.
The set is not closed under the operation.

• Integers with subtraction.
The operation is not associative: (a − b)− c = a − (b − c)
only if c = 0.

• All subsets of a set X with the operation A ∗ B = A ∪ B .
The operation is associative and commutative, the empty set
is the identity element. However there is no inverse for a
nonempty set.



Basic properties of groups

• The identity element is unique.
Assume that e1 and e2 are identity elements. Then
e1 = e1e2 = e2.

• The inverse element is unique.
Assume that h1 and h2 are inverses of an element g . Then
h1 = h1e = h1(gh2) = (h1g)h2 = eh2 = h2.

• (ab)−1 = b−1a−1.

We need to show that (ab)(b−1a−1) = (b−1a−1)(ab) = e.

Indeed, (ab)(b−1a−1) =
(

(ab)b−1
)

a−1 =
(

a(bb−1)
)

a−1

= (ae)a−1 = aa−1 = e. Similarly, (b−1a−1)(ab) =
b−1

(

a−1(ab)
)

= b−1
(

(a−1a)b
)

= b−1(eb) = b−1b = e.

• (a1a2 . . . an)
−1 = a−1

n
. . . a−1

2
a−1

1
.


