MATH 433 Applied Algebra Lecture 20: Abstract groups (continued).

Abstract groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)

(g*h)*k=g*(h*k) for all $g,h,k\in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Examples: numbers

- Real numbers ${\mathbb R}$ with addition.
- \bullet Nonzero real numbers $\mathbb{R}\setminus\{0\}$ with multiplication.
- Integers \mathbb{Z} with addition.

(G1) $a, b \in \mathbb{Z} \implies a+b \in \mathbb{Z}$ (G2) (a+b)+c = a + (b+c)(G3) the identity element is 0 as a+0=0+a=a and $0 \in \mathbb{Z}$ (G4) the inverse of $a \in \mathbb{Z}$ is -a as a + (-a) = (-a) + a = 0 and $-a \in \mathbb{Z}$ (G5) a+b=b+a

Examples: modular arithmetic

• The set \mathbb{Z}_n of congruence classes modulo n with addition.

(G1) $[a], [b] \in \mathbb{Z}_n \implies [a] + [b] = [a + b] \in \mathbb{Z}_n$ (G2) ([a] + [b]) + [c] = [a + b + c] = [a] + ([b] + [c])(G3) the identity element is [0] as [a] + [0] = [0] + [a] = [a](G4) the inverse of [a] is [-a] as [a] + [-a] = [-a] + [a] = [0](G5) [a] + [b] = [a + b] = [b] + [a]

Examples: modular arithmetic

• The set G_n of invertible congruence classes modulo n with multiplication.

A congruence class $[a]_n \in \mathbb{Z}_n$ belongs to G_n if gcd(a, n) = 1.

(G1)
$$[a]_n, [b]_n \in G_n \implies \operatorname{gcd}(a, n) = \operatorname{gcd}(b, n) = 1$$

 $\implies \operatorname{gcd}(ab, n) = 1 \implies [a]_n[b]_n = [ab]_n \in G_n$
(G2) $([a][b])[c] = [abc] = [a]([b][c])$
(G3) the identity element is [1] as $[a][1] = [1][a] = [a]$
(G4) the inverse of $[a]$ is $[a]^{-1}$ by definition of $[a]^{-1}$
(G5) $[a][b] = [ab] = [b][a]$

Examples: permutations

• Symmetric group S(n): all permutations on n elements with composition (= multiplication).

(G1) π and σ are bijective functions from the set $\{1, 2, ..., n\}$ to itself \implies so is $\pi\sigma$

(G2) $(\pi\sigma)\tau$ and $\pi(\sigma\tau)$ applied to k, $1 \le k \le n$, both yield $\pi(\sigma(\tau(k)))$

(G3) the identity element is id as $\pi \operatorname{id} = \operatorname{id} \pi = \pi$

(G4) the inverse permutation π^{-1} satisfies $\pi\pi^{-1} = \pi^{-1}\pi = id$ (conversely, if $\pi\sigma = \sigma\pi = id$, then $\sigma = \pi^{-1}$) (G5) fails for $n \ge 3$ as $(1 \ 2)(2 \ 3) = (1 \ 2 \ 3)$ while $(2 \ 3)(1 \ 2) = (1 \ 3 \ 2)$

Examples: permutations

• Alternating group A(n): even permutations on n elements with composition (= multiplication).

(G1) π and σ are even permutations $\implies \pi\sigma$ is even (G2) $(\pi\sigma)\tau = \pi(\sigma\tau)$ holds in A(n) as it holds in a larger set S(n)

(G3) the identity element from S(n), which is id, is an even permutation, hence it is the identity element in A(n) as well (G4) π is an even permutation $\implies \pi^{-1}$ is also even (G5) fails for $n \ge 4$ as $(1 \ 2 \ 3)(2 \ 3 \ 4) = (1 \ 2)(3 \ 4)$ while $(2 \ 3 \ 4)(1 \ 2 \ 3) = (1 \ 3)(2 \ 4)$

Examples: set theory

• All subsets of a set X with the operation of symmetric difference: $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

 $(G1) A, B \subset X \implies A \triangle B \subset X.$

(G2) $(A \triangle B) \triangle C = A \triangle (B \triangle C)$ consists of those elements of X that belong to an odd number of sets A, B, C (either to just one of them or to all three)

(G3) the identity element is the empty set \emptyset since $A \triangle \emptyset = \emptyset \triangle A = A$ for any set A

(G4) the inverse of a set $A \subset X$ is A itself: $A \triangle A = \emptyset$ (G5) $A \triangle B = B \triangle A = (A \cup B) \setminus (A \cap B)$

Examples: logic

- Binary logic $\mathcal{L} = \{$ "true", "false" $\}$ with the operation XOR (eXclusive OR): "x XOR y" means "either x or y (but not both)".
- (G1) "true XOR false" = "false XOR true" = "true", "true XOR true" = "false XOR false" = "false" (G2) "(x XOR y) XOR z" = "x XOR (y XOR z)" (G3) the identity element is "false" (G4) the inverse of $x \in \mathcal{L}$ is x itself (G5) "x XOR y" = "y XOR x"

More examples

• Any vector space V with addition.

Those axioms of the vector space that involve only addition are exactly axioms of the commutative group.

• Trivial group
$$(G, *)$$
, where $G = \{e\}$ and $e * e = e$.

Verification of all axioms is straightforward.

• Positive real numbers with the operation x * y = 2xy. (G1) $x, y > 0 \implies 2xy > 0$ (G2) (x * y) * z = x * (y * z) = 4xyz(G3) the identity element is $\frac{1}{2}$ as x * e = x means 2ex = x(G4) the inverse of x is $\frac{1}{4x}$ as $x * y = \frac{1}{2}$ means 4xy = 1(G5) x * y = y * x = 2xy

Counterexamples

• Real numbers \mathbb{R} with multiplication.

0 has no inverse.

• Positive integers with addition. No identity element.

• Nonnegative integers with addition. No inverse element for positive numbers.

• Odd permutations with multiplication. The set is not closed under the operation.

• Integers with subtraction.

The operation is not associative: (a - b) - c = a - (b - c)only if c = 0.

• All subsets of a set X with the operation $A * B = A \cup B$. The operation is associative and commutative, the empty set is the identity element. However there is no inverse for a nonempty set.

Basic properties of groups

• The identity element is unique. Assume that e_1 and e_2 are identity elements. Then $e_1 = e_1e_2 = e_2$.

• The inverse element is unique.

Assume that h_1 and h_2 are inverses of an element g. Then $h_1 = h_1 e = h_1(gh_2) = (h_1g)h_2 = eh_2 = h_2$.

•
$$(ab)^{-1} = b^{-1}a^{-1}$$
.

We need to show that $(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = e$. Indeed, $(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} = (a(bb^{-1}))a^{-1}$ $= (ae)a^{-1} = aa^{-1} = e$. Similarly, $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}(ab)) = b^{-1}((a^{-1}a)b) = b^{-1}(eb) = b^{-1}b = e$.

•
$$(a_1a_2...a_n)^{-1} = a_n^{-1}...a_2^{-1}a_1^{-1}.$$