MATH 433 Applied Algebra Lecture 22: Semigroups.

Groups

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g * h is an element of G;

(G2: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Semigroups

Definition. A **semigroup** is a nonempty set S, together with a binary operation *, that satisfies the following axioms:

(S1: closure)

for all elements g and h of S, g * h is an element of S;

(S2: associativity) (g * h) * k = g * (h * k) for all $g, h, k \in S$.

The semigroup (S, *) is said to be a **monoid** if it satisfies an additional axiom:

(S3: existence of identity) there exists an element $e \in S$ such that e * g = g * e = g for all $g \in S$.

Additional useful properties of semigroups:

(S4: cancellation) $g * h_1 = g * h_2$ implies $h_1 = h_2$ and $h_1 * g = h_2 * g$ implies $h_1 = h_2$ for all $g, h_1, h_2 \in S$. (S5: commutativity) g * h = h * g for all $g, h \in S$.

Examples of semigroups

- Clearly, any group is also a semigroup and a monoid.
- Real numbers ${\mathbb R}$ with multiplication (commutative monoid).
- Positive integers with addition (commutative semigroup with cancellation).

• Positive integers with multiplication (commutative monoid with cancellation).

• Given a set X, all functions $f : X \to X$ with composition (monoid).

• All injective functions $f : X \to X$ with composition (monoid with left cancellation: $gf_1 = gf_2 \implies f_1 = f_2$).

• All surjective functions $f : X \to X$ with composition (monoid with right cancellation: $f_1g = f_2g \implies f_1 = f_2$).

Examples of semigroups

- All $n \times n$ matrices with multiplication (monoid).
- All $n \times n$ matrices with integer entries, with multiplication (monoid).
- Invertible $n \times n$ matrices with integer entries, with multiplication (monoid with cancellation).
- All subsets of a set X with the operation $A * B = A \cup B$ (commutative monoid).
- All subsets of a set X with the operation $A * B = A \cap B$ (commutative monoid).
- Positive integers with the operation $a * b = \max(a, b)$ (commutative monoid).
- Positive integers with the operation $a * b = \min(a, b)$ (commutative semigroup).

Examples of semigroups

• Given a finite alphabet X, the set X^* of all finite words in X with the operation of concatenation.

If $w_1 = a_1 a_2 \dots a_n$ and $w_2 = b_1 b_2 \dots b_k$, then $w_1 w_2 = a_1 a_2 \dots a_n b_1 b_2 \dots b_k$. This is a monoid with cancellation. The identity element is the empty word.

• The set S(X) of all automaton transformations over an alphabet X with composition.

Any transducer automaton with the input/output alphabet X generates a transformation $f: X^* \to X^*$ by the rule f(input-word) = output-word. It turns out that the composition of two transformations generated by finite state automata can also be generated by a finite state automaton.

Theorem Any finite semigroup with cancellation is actually a group.

Lemma If S is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \ge 2$ such that $s^k = s$.

Proof: Since S is finite, the sequence s, s^2, s^3, \ldots contains repetitions, i.e., $s^k = s^m$ for some $k > m \ge 1$. If m = 1 then we are done. If m > 1 then $s^{m-1}s^{k-m+1} = s^{m-1}s$, which implies $s^{k-m+1} = s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^k = s$ for some $k \ge 2$. Then $e = s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^k g = sg$ or, equivalently, s(eg) = sg. After cancellation, eg = g. Similarly, ge = g for all $g \in S$. Finally, for any $g \in S$ there is $n \ge 2$ such that $g^n = g = ge$. Then $g^{n-1} = e$, which implies that $g^{n-2} = g^{-1}$.