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Groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Semigroups

Definition. A semigroup is a nonempty set S , together with
a binary operation ∗, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Additional useful properties of semigroups:

(S4: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S5: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Examples of semigroups

• Clearly, any group is also a semigroup and a monoid.

• Real numbers R with multiplication (commutative monoid).

• Positive integers with addition (commutative semigroup
with cancellation).

• Positive integers with multiplication (commutative monoid
with cancellation).

• Given a set X , all functions f : X → X with composition
(monoid).

• All injective functions f : X → X with composition
(monoid with left cancellation: gf1 = gf2 =⇒ f1 = f2).

• All surjective functions f : X → X with composition
(monoid with right cancellation: f1g = f2g =⇒ f1 = f2).



Examples of semigroups

• All n×n matrices with multiplication (monoid).

• All n×n matrices with integer entries, with multiplication
(monoid).

• Invertible n×n matrices with integer entries, with
multiplication (monoid with cancellation).

• All subsets of a set X with the operation A ∗ B = A ∪ B

(commutative monoid).

• All subsets of a set X with the operation A ∗ B = A ∩ B

(commutative monoid).

• Positive integers with the operation a ∗ b = max(a, b)
(commutative monoid).

• Positive integers with the operation a ∗ b = min(a, b)
(commutative semigroup).



Examples of semigroups

• Given a finite alphabet X , the set X ∗ of all finite

words in X with the operation of concatenation.

If w1 = a1a2 . . . an and w2 = b1b2 . . . bk , then
w1w2 = a1a2 . . . anb1b2 . . . bk . This is a monoid with
cancellation. The identity element is the empty word.

• The set S(X ) of all automaton transformations

over an alphabet X with composition.

Any transducer automaton with the input/output alphabet X
generates a transformation f : X ∗ → X ∗ by the rule
f (input-word) = output-word. It turns out that the
composition of two transformations generated by finite state
automata can also be generated by a finite state automaton.



Theorem Any finite semigroup with cancellation is

actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s ∈ S there exists an

integer k ≥ 2 such that sk = s.

Proof: Since S is finite, the sequence s, s2, s3, . . . contains
repetitions, i.e., sk = sm for some k > m ≥ 1. If m = 1
then we are done. If m > 1 then sm−1sk−m+1 = sm−1s,
which implies sk−m+1 = s.

Proof of the theorem: Take any s ∈ S . By Lemma, we have
sk = s for some k ≥ 2. Then e = sk−1 is the identity
element. Indeed, for any g ∈ S we have skg = sg or,
equivalently, s(eg) = sg . After cancellation, eg = g .
Similarly, ge = g for all g ∈ S . Finally, for any g ∈ S there
is n ≥ 2 such that g n = g = ge. Then g n−1 = e, which
implies that g n−2 = g−1.


