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Applied Algebra

Lecture 24:
Ring and fields (continued).



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an Abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all x , y ∈ R , x + y is an element of R ;
(R2) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(R3) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(R4) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(R5) x + y = y + x for all x , y ∈ R ;
(R6) for all x , y ∈ R , xy is an element of R ;
(R7) (xy)z = x(yz) for all x , y , z ∈ R ;
(R8) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Examples of rings

Informally, a ring is a set with three arithmetic operations:
addition, subtraction and multiplication. Subtraction is
defined by x − y = x + (−y ).

• Real numbers R.

• Integers Z.

• 2Z: even integers.

• Zn: congruence classes modulo n.

• Mn(R): all n×n matrices with real entries.

• Mn(Z): all n×n matrices with integer entries.

• All functions f : S → R on a nonempty set S .

• Zero ring: any additive Abelian group with trivial
multiplication: xy = 0 for all x and y .

• Trivial ring {0}.



Examples of rings

In examples below, real numbers R can be replaced by a more
general ring of coefficients.

• R[X ]: polynomials in variable X with real coefficients.
p(X ) = c0 + c1X + c2X

2 + · · ·+ cnX
n, where each ci ∈ R.

• R(X ): rational functions in variable X with real coefficients.

r(X ) = a0+a1X+a2X
2+···+anX

n

b0+b1X+b2X 2+···+bmXm , where ai , bj ∈ R and bm 6= 0.

• R[X ,Y ]: polynomials in variables X ,Y with real
coefficients.
R[X ,Y ] = R[X ][Y ].

• R[[X ]]: formal power series in variable X with real
coefficients.
p(X ) = c0 + c1X + c2X

2 + · · ·+ cnX
n + . . . , where ci ∈ R.

Multiplication is well defined. For example,

(1− X )(1 + X + X 2 + X 3 + X 4 + . . . ) = 1.



From rings to fields

A ring R is called a domain if it has no zero-divisors, that is,
xy = 0 implies x = 0 or y = 0.

A ring R is called a ring with identity if there exists an
identity element for multiplication (denoted 1).

A division ring is a nontrivial ring with identity in which every
nonzero element has a multiplicative inverse.

A ring R is called commutative if the multiplication is
commutative.

An integral domain is a nontrivial commutative ring with
identity and no zero-divisors.

A field is an integral domain in which every nonzero element
has a multiplicative inverse (equivalently, a commutative
division ring).

rings ⊃ domains ⊃ integral domains ⊃ fields
⊃ division rings ⊃



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an Abelian group under addition,
• F \ {0} is an Abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with identity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



Basic properties of fields

• The zero 0 and the unity 1 are unique.

• For any a ∈ F , the negative −a is unique.

• For any a 6= 0, the inverse a−1 is unique.

• −(−a) = a for all a ∈ F .

• 0 · a = 0 for all a ∈ F .

• ab = 0 implies that a = 0 or b = 0.

• (−1) · a = −a for all a ∈ F .

• (−1) · (−1) = 1.

• (−a)b = a(−b) = −ab for all a, b ∈ F .

• (a − b)c = ac − bc for all a, b, c ∈ F .



Characteristic of a field

A field F is said to be of nonzero characteristic if

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n summands

= 0 for some positive integer n.

The smallest integer with this property is called the
characteristic of F . Otherwise the field F has

characteristic 0.

The fields Q, R, and C have characteristic 0.
The field Zp (p prime) has characteristic p.

In general, any finite field has nonzero characteristic.
Any nonzero characteristic is prime since

(1 + · · ·+ 1
︸ ︷︷ ︸

n summands

)(1 + · · ·+ 1
︸ ︷︷ ︸

m summands

) = 1 + · · · + 1
︸ ︷︷ ︸

nm summands

.



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

Solution:

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1
b b a 1 0

× 0 1 a b

0 0 0 0 0
1 0 1 a b

a 0 a b 1
b 0 b 1 a



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

Remarks on solution. First we fill in the multiplication table.
Since 0x = 0 and 1x = x for every x ∈ F , it remains to
determine only a2, b2, and ab = ba. Using the fact that
{1, a, b} is a multiplicative group, we obtain that ab = 1,
a2 = b, and b2 = a.

As for the addition table, we have x + 0 = x for every x ∈ F .
Next step is to determine 1 + 1. Assuming 1 + 1 = a, we
obtain a+ 1 = b and b + 1 = 0. This is a contradiction: the
characteristic of F turns out to be 4, not a prime! Hence
1 + 1 6= a. Similarly, 1 + 1 6= b. By deduction, 1 + 1 = 0.
Then x + x = 1x + 1x = (1 + 1)x = 0x = 0 for all x ∈ F .
The rest is filled in using the cancellation (“sudoku”) rules.


