MATH 433
Applied Algebra
Lecture 24:
Ring and fields (continued).

Rings

Definition. A ring is a set R, together with two binary operations usually called addition and multiplication and denoted accordingly, such that

- R is an Abelian group under addition,
- R is a semigroup under multiplication,
- multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all $x, y \in R, \quad x+y$ is an element of R;
(R2) $(x+y)+z=x+(y+z)$ for all $x, y, z \in R$;
(R3) there exists an element, denoted 0 , in R such that
$x+0=0+x=x$ for all $x \in R$;
(R4) for every $x \in R$ there exists an element, denoted $-x$, in R such that $x+(-x)=(-x)+x=0$;
(R5) $x+y=y+x$ for all $x, y \in R$;
(R6) for all $x, y \in R, \quad x y$ is an element of R;
(R7) $(x y) z=x(y z)$ for all $x, y, z \in R$;
(R8) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.

Examples of rings

Informally, a ring is a set with three arithmetic operations: addition, subtraction and multiplication. Subtraction is defined by $x-y=x+(-y)$.

- Real numbers \mathbb{R}.
- Integers \mathbb{Z}.
- $2 \mathbb{Z}$: even integers.
- \mathbb{Z}_{n} : congruence classes modulo n.
- $\mathcal{M}_{n}(\mathbb{R})$: all $n \times n$ matrices with real entries.
- $\mathcal{M}_{n}(\mathbb{Z}):$ all $n \times n$ matrices with integer entries.
- All functions $f: S \rightarrow \mathbb{R}$ on a nonempty set S.
- Zero ring: any additive Abelian group with trivial multiplication: $x y=0$ for all x and y.
- Trivial ring $\{0\}$.

Examples of rings

In examples below, real numbers \mathbb{R} can be replaced by a more general ring of coefficients.

- $\mathbb{R}[X]$: polynomials in variable X with real coefficients. $p(X)=c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n} X^{n}$, where each $c_{i} \in \mathbb{R}$.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients. $r(X)=\frac{a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}}{b_{0}+b_{1} X+b_{2} X^{2}+\cdots+b_{m} X^{m}}$, where $a_{i}, b_{j} \in \mathbb{R}$ and $b_{m} \neq 0$.
$\bullet \mathbb{R}[X, Y]$: polynomials in variables X, Y with real coefficients.
$\mathbb{R}[X, Y]=\mathbb{R}[X][Y]$.
- $\mathbb{R}[[X]]$: formal power series in variable X with real coefficients.
$p(X)=c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n} X^{n}+\ldots$, where $c_{i} \in \mathbb{R}$.
Multiplication is well defined. For example,

$$
(1-X)\left(1+X+X^{2}+X^{3}+X^{4}+\ldots\right)=1 .
$$

From rings to fields

A ring R is called a domain if it has no zero-divisors, that is, $x y=0$ implies $x=0$ or $y=0$.
A ring R is called a ring with identity if there exists an identity element for multiplication (denoted 1).
A division ring is a nontrivial ring with identity in which every nonzero element has a multiplicative inverse.
A ring R is called commutative if the multiplication is commutative.
An integral domain is a nontrivial commutative ring with identity and no zero-divisors.
A field is an integral domain in which every nonzero element has a multiplicative inverse (equivalently, a commutative division ring).

$$
\begin{aligned}
\text { rings } \supset \text { domains } \supset & \supset \text { integral domains } \supset \text { fields } \\
& \supset \text { division rings } \supset
\end{aligned}
$$

Fields

Definition. A field is a set F, together with two binary operations called addition and multiplication and denoted accordingly, such that

- F is an Abelian group under addition,
- $F \backslash\{0\}$ is an Abelian group under multiplication,
- multiplication distributes over addition.

In other words, the field is a commutative ring with identity $(1 \neq 0)$ such that any nonzero element has a multiplicative inverse.

Examples. - Real numbers \mathbb{R}.

- Rational numbers \mathbb{Q}.
- Complex numbers \mathbb{C}.
- \mathbb{Z}_{p} : congruence classes modulo p, where p is prime.
- $\mathbb{R}(X)$: rational functions in variable X with real coefficients.

Basic properties of fields

- The zero 0 and the unity 1 are unique.
- For any $a \in F$, the negative $-a$ is unique.
- For any $a \neq 0$, the inverse a^{-1} is unique.
- $-(-a)=a$ for all $a \in F$.
- $0 \cdot a=0$ for all $a \in F$.
- $a b=0$ implies that $a=0$ or $b=0$.
- $(-1) \cdot a=-a$ for all $a \in F$.
- $(-1) \cdot(-1)=1$.
- $(-a) b=a(-b)=-a b$ for all $a, b \in F$.
- $(a-b) c=a c-b c$ for all $a, b, c \in F$.

Characteristic of a field

A field F is said to be of nonzero characteristic if $\underbrace{1+1+\cdots+1}=0$ for some positive integer n. n summands
The smallest integer with this property is called the characteristic of F. Otherwise the field F has characteristic 0 .

The fields \mathbb{Q}, \mathbb{R}, and \mathbb{C} have characteristic 0 . The field \mathbb{Z}_{p} (p prime) has characteristic p. In general, any finite field has nonzero characteristic. Any nonzero characteristic is prime since

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Solution:

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

\times	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Problem. Let $F=\{0,1, a, b\}$ be a field consisting of 4 elements, where 0 denotes the additive identity element, 1 denotes the multiplicative identity element, and a, b denote the remaining two elements. Fill in the addition and multiplication tables for the field F.

Remarks on solution. First we fill in the multiplication table. Since $0 x=0$ and $1 x=x$ for every $x \in F$, it remains to determine only a^{2}, b^{2}, and $a b=b a$. Using the fact that $\{1, a, b\}$ is a multiplicative group, we obtain that $a b=1$, $a^{2}=b$, and $b^{2}=a$.
As for the addition table, we have $x+0=x$ for every $x \in F$. Next step is to determine $1+1$. Assuming $1+1=a$, we obtain $a+1=b$ and $b+1=0$. This is a contradiction: the characteristic of F turns out to be 4, not a prime! Hence $1+1 \neq a$. Similarly, $1+1 \neq b$. By deduction, $1+1=0$. Then $x+x=1 x+1 x=(1+1) x=0 x=0$ for all $x \in F$. The rest is filled in using the cancellation ("sudoku") rules.

