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Lecture 25:
Vector spaces over a field.

Algebras over a field.



Vector spaces over a field

Definition. Given a field F , a vector space V over F is an
additive Abelian group endowed with an action of F called
scalar multiplication or scaling.

An action of F on V is an operation that takes elements
λ ∈ F and v ∈ V and gives an element, denoted λv , of V .

The scalar multiplication is to satisfy the following axioms:

(V1) for all v ∈ V and λ ∈ F , λv is an element of V ;
(V2) λ(µv ) = (λµ)v for all v ∈ V and λ, µ ∈ F ;
(V3) 1v = v for all v ∈ V ;
(V4) (λ+ µ)v = λv + µv for all v ∈ V and λ, µ ∈ F ;
(V5) λ(v + w) = λv + λw for all v ,w ∈ V and λ ∈ F .

(Almost) all linear algebra developed for vector spaces over R
can be generalized to vector spaces over an arbitrary field F .
This includes: linear independence, span, basis, dimension,
determinants, matrices, eigenvalues and eigenvectors.



Examples of vector spaces over a field F :

• The space F n of n-dimensional coordinate

vectors (x1, x2, . . . , xn) with coordinates in F .

• The space Mn,m(F ) of n×m matrices with
entries in F .

• The space F [X ] of polynomials
p(x) = a0+ a1X + · · ·+ anX

n with coefficients in F .

• Any field F ′ that is an extension of F (i.e.,

F ⊂ F ′ and the operations on F are restrictions of
the corresponding operations on F ′). In particular,

C is a vector space over R and over Q, R is a
vector space over Q.



Counterexample. • Consider the Abelian group
V = Rn with a nonstandard scalar multiplication

over R (“lazy scaling”):

r ⊙ v = v for any v ∈ Rn and r ∈ R.

Let us verify the axioms.

V1. r ⊙ v = v ∈ V

V2. (rs)⊙ v = r ⊙ (s ⊙ v) ⇐⇒ v = v

V3. 1⊙ v = v ⇐⇒ v = v

V4. (r + s)⊙ v = r ⊙ v + s ⊙ v ⇐⇒ v = v + v

V5. r ⊙ (v+w) = r ⊙ v+ r ⊙w ⇐⇒ v+w = v+w

The only axiom that fails is V4.



Finite fields

Theorem 1 Any finite field F has nonzero characteristic.

Proof: Consider a sequence 1, 1+1, 1+1+1, . . . Since F is
finite, there are repetitions in this sequence. Clearly, the
difference of any two elements is another element of the
sequence. Hence the sequence contains 0 so that the
characteristic of F is nonzero.

Theorem 2 The number of elements in a finite field F is pk ,
where p is a prime number.

Proof: Let p be the characteristic of F . By the above,
p > 0. As we know from the previous lecture, p is prime.
Let F ′ be the set of all elements 1, 1+1, 1+1+1, . . . Clearly,
F ′ consists of p elements. One can show that F ′ is a subfield
(canonically identified with Zp). It follows that F has pk

elements, where k = dimF as a vector space over F ′.



Algebra over a field

Definition. An algebra A over a field F (or F -algebra) is a
vector space with a multiplication which is a bilinear operation
on A. That is, the product xy is both a linear function of x

and a linear function of y .

To be precise, the following axioms are to be satisfied:

(A1) for all x , y ∈ A, the product xy is an element of A;
(A2) x(y+z) = xy+xz and (y+z)x = yx+zx for x , y , z ∈A;
(A3) (λx)y = λ(xy ) = x(λy ) for all x , y ∈ A and λ ∈ F .

An F -algebra is associative if the multiplication is associative.
An associative algebra is both a vector space and a ring.

An F -algebra A is a Lie algebra if the multiplication (usually
denoted [x , y ] and called Lie bracket in this case) satisfies:

(Antisymmetry): [x , y ] = −[y , x ] for all x , y ∈ A;
(Jacobi’s identity): [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0
for all x , y , z ∈ A.



Examples of associative algebras:

• The space Mn(F ) of n×n matrices with entries in F .

• The space F [X ] of polynomials
p(x) = a0 + a1X + · · ·+ anX

n with coefficients in F .

• The space of all functions f : S → F on a set S taking
values in a field F .

• Any field F ′ that is an extension of a field F is an
associative algebra over F .

Examples of Lie algebras:

• R3 with the cross product is a Lie algebra over R.

• Any associative algebra A with a Lie bracket (called the
commutator) defined by [x , y ] = xy − yx .


