MATH 433 Applied Algebra Lecture 25: Vector spaces over a field. Algebras over a field.

Vector spaces over a field

Definition. Given a field F, a **vector space** V over F is an additive Abelian group endowed with an action of F called **scalar multiplication** or **scaling**.

An action of *F* on *V* is an operation that takes elements $\lambda \in F$ and $v \in V$ and gives an element, denoted λv , of *V*. The scalar multiplication is to satisfy the following axioms: (V1) for all $v \in V$ and $\lambda \in F$, λv is an element of *V*; (V2) $\lambda(\mu v) = (\lambda \mu)v$ for all $v \in V$ and $\lambda, \mu \in F$; (V3) 1v = v for all $v \in V$; (V4) $(\lambda + \mu)v = \lambda v + \mu v$ for all $v \in V$ and $\lambda, \mu \in F$; (V5) $\lambda(v + w) = \lambda v + \lambda w$ for all $v, w \in V$ and $\lambda \in F$.

(Almost) all linear algebra developed for vector spaces over \mathbb{R} can be generalized to vector spaces over an arbitrary field F. This includes: linear independence, span, basis, dimension, determinants, matrices, eigenvalues and eigenvectors.

Examples of vector spaces over a field F:

• The space F^n of *n*-dimensional coordinate vectors $(x_1, x_2, ..., x_n)$ with coordinates in *F*.

• The space $\mathcal{M}_{n,m}(F)$ of $n \times m$ matrices with entries in F.

The space F[X] of polynomials p(x) = a₀ + a₁X + ··· + a_nXⁿ with coefficients in F.
Any field F' that is an extension of F (i.e., F ⊂ F' and the operations on F are restrictions of the corresponding operations on F'). In particular, C is a vector space over R and over Q, R is a vector space over Q. Counterexample. • Consider the Abelian group $V = \mathbb{R}^n$ with a nonstandard scalar multiplication over \mathbb{R} ("lazy scaling"):

$$r \odot \mathbf{v} = \mathbf{v}$$
 for any $\mathbf{v} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Let us verify the axioms.

V1. $r \odot \mathbf{v} = \mathbf{v} \in V$ V2. $(rs) \odot \mathbf{v} = r \odot (s \odot \mathbf{v})$ $\iff \mathbf{v} = \mathbf{v}$ V3. $1 \odot \mathbf{v} = \mathbf{v}$ $\iff \mathbf{v} = \mathbf{v}$ V4. $(r+s) \odot \mathbf{v} = r \odot \mathbf{v} + s \odot \mathbf{v}$ $\iff \mathbf{v} = \mathbf{v} + \mathbf{v}$ V5. $r \odot (\mathbf{v} + \mathbf{w}) = r \odot \mathbf{v} + r \odot \mathbf{w}$ $\iff \mathbf{v} + \mathbf{w} = \mathbf{v} + \mathbf{w}$

The only axiom that fails is V4.

Finite fields

Theorem 1 Any finite field *F* has nonzero characteristic.

Proof: Consider a sequence $1, 1+1, 1+1+1, \ldots$ Since *F* is finite, there are repetitions in this sequence. Clearly, the difference of any two elements is another element of the sequence. Hence the sequence contains 0 so that the characteristic of *F* is nonzero.

Theorem 2 The number of elements in a finite field F is p^k , where p is a prime number.

Proof: Let p be the characteristic of F. By the above, p > 0. As we know from the previous lecture, p is prime. Let F' be the set of all elements $1, 1+1, 1+1+1, \ldots$ Clearly, F' consists of p elements. One can show that F' is a subfield (canonically identified with \mathbb{Z}_p). It follows that F has p^k elements, where $k = \dim F$ as a vector space over F'.

Algebra over a field

Definition. An **algebra** A over a field F (or F-**algebra**) is a vector space with a multiplication which is a bilinear operation on A. That is, the product xy is both a linear function of x and a linear function of y.

To be precise, the following axioms are to be satisfied:

(A1) for all $x, y \in A$, the product xy is an element of A; (A2) x(y+z) = xy+xz and (y+z)x = yx+zx for $x, y, z \in A$; (A3) $(\lambda x)y = \lambda(xy) = x(\lambda y)$ for all $x, y \in A$ and $\lambda \in F$.

An *F*-algebra is **associative** if the multiplication is associative. An associative algebra is both a vector space and a ring.

An *F*-algebra *A* is a **Lie algebra** if the multiplication (usually denoted [x, y] and called **Lie bracket** in this case) satisfies: **(Antisymmetry)**: [x, y] = -[y, x] for all $x, y \in A$; **(Jacobi's identity)**: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0for all $x, y, z \in A$. Examples of associative algebras:

- The space $\mathcal{M}_n(F)$ of $n \times n$ matrices with entries in F.
- The space F[X] of polynomials

 $p(x) = a_0 + a_1 X + \cdots + a_n X^n$ with coefficients in F.

• The space of all functions $f : S \to F$ on a set S taking values in a field F.

• Any field F' that is an extension of a field F is an associative algebra over F.

Examples of Lie algebras:

- \mathbb{R}^3 with the cross product is a Lie algebra over \mathbb{R} .
- Any associative algebra A with a Lie bracket (called the **commutator**) defined by [x, y] = xy yx.