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Lecture 27:
Properties of groups.

Order of an element in a group.



Groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Basic properties of groups

• The identity element is unique.

• The inverse element is unique.

• (g−1)−1 = g . In other words, h = g−1 if and
only if g = h−1.

• (gh)−1 = h−1g−1.

• (g1g2 . . . gn)
−1 = g−1

n
. . . g−1

2
g−1

1
.

• Cancellation properties: gh1 = gh2 =⇒

h1 = h2 and h1g = h2g =⇒ h1 = h2 for all
g , h1, h2 ∈ G .

Indeed, gh1 = gh2 =⇒ g−1(gh1) = g−1(gh2)
=⇒ (g−1g)h1 = (g−1g)h2 =⇒ eh1 = eh2 =⇒ h1 = h2.
Similarly, h1g = h2g =⇒ h1 = h2.



Equations in groups

Theorem Let G be a group. For any a, b, c ∈ G ,

• the equation ax = b has a unique solution
x = a−1b;
• the equation ya = b has a unique solution

y = ba−1;
• the equation azc = b has a unique solution

z = a−1bc−1.

Problem. Solve an equation in the group S(5):
(1 2 4)(3 5)π(2 3 4 5) = (1 5).

Solution: π =
(

(1 2 4)(3 5)
)

−1
(1 5)(2 3 4 5)−1

= (3 5)−1(1 2 4)−1(1 5)(2 3 4 5)−1

= (5 3)(4 2 1)(1 5)(5 4 3 2) = (1 3)(2 4 5).



Powers of an element

Let g be an element of a group G . The positive powers of g
are defined inductively:

g 1 = g and g k+1 = g · g k for every integer k ≥ 1.

The negative powers of g are defined as the positive powers of
its inverse: g−k = (g−1)k for every positive integer k.
Finally, we set g 0 = e.

Theorem Let g be an element of a group G and r , s ∈ Z.
Then
(i) g rg s = g r+s ,
(ii) (g r)s = g rs ,
(iii) (g r)−1 = g−r .

Idea of the proof: First one proves the theorem for positive
r , s by induction (induction on r for (i) and (iii), induction on
s for (ii) ). Then the general case is reduced to the case of
positive r , s.



Order of an element

Let g be an element of a group G . We say that g has finite
order if g n = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g and denoted o(g).

Otherwise g is said to have the infinite order, o(g) = ∞.

Theorem If G is a finite group, then every element of G has
finite order.

Proof: Let g ∈ G and consider the list of powers:
g , g 2

, g 3
, . . . . Since all elements in this list belong to the

finite set G , there must be repetitions within the list. Assume
that g r = g s for some 0 < r < s. Then g re = g rg s−r

=⇒ g s−r = e due to the cancellation property.



Theorem 1 Let G be a group and g ∈ G be an element of
finite order n. Then g r = g s if and only if r ≡ s mod n.
In particular, g r = e if and only if the order n divides r .

Theorem 2 Let G be a group and g ∈ G be an element of
infinite order. Then g r 6= g s whenever r 6= s.

Theorem 3 o(g−1) = o(g) for all g ∈ G .

Proof: (g−1)n = g−n = (g n)−1 for any integer n ≥ 1. Since
e−1 = e, it follows that (g−1)n = e if and only if g n = e.

Theorem 4 Let g and h be two commuting elements of a
group G : gh = hg . Then
(i) the powers g r and hs commute for all r , s ∈ Z,
(ii) (gh)r = g rhr for all r ∈ Z.

Theorem 5 Let G be a group and g , h ∈ G be two
commuting elements of finite order. Then gh also has a
finite order. Moreover, o(gh) divides lcm

(

o(g), o(h)
)

.



Examples

• G = S(10), g = (1 2 3 4 5 6), h = (7 8 9 10).

g and h are disjoint cycles, in particular, gh = hg .
We have o(g) = 6, o(h) = 4, and
o(gh) = lcm(o(g), o(h)) = 12.

• G = S(6), g = (1 2 3 4 5 6),
h = (1 3 5)(2 4 6).

Notice that h = g 2. Hence gh = hg = g 3 = (1 4)(2 5)(3 6).
We have o(g) = 6, o(h) = 3, and
o(gh) = 2 < lcm(o(g), o(h)).

• G = S(5), g = (1 2 3), h = (3 4 5).

gh = (1 2 3 4 5), hg = (1 2 4 5 3) 6= gh.
We have o(g) = o(h) = 3 and o(gh) = o(hg) = 5.



Conjugacy

Definition. Given g1, g2 ∈ G , we say that the element g1 is
conjugate to g2 if g1 = hg2h

−1 for some h ∈ G . The
conjugacy is an equivalence relation on the group G .

Theorem Conjugate elements have the same order.

Proof: Let g1, g2 ∈ G and suppose g1 is conjugate to g2,
g1 = hg2h

−1 for some h ∈ G . Then

g 2
1 = hg2h

−1hg2h
−1 = hg 2

2h
−1,

g 3
1 = g1g

2
1 = hg2h

−1hg 2
2h

−1 = hg 3
2h

−1, and so on. . .

By induction, g n

1 = hg n

2 h
−1 for all n ≥ 1. If g n

2 = e then
g n

1 = heh−1 = hh−1 = e. It follows that o(g1) ≤ o(g2).
Since g2 is conjugate to g1 as well, we also have
o(g2) ≤ o(g1). Thus o(g1) = o(g2).

Corollary o(gh) = o(hg) for all g , h ∈ G .

Proof: The element gh is conjugate to hg , gh = g(hg)g−1.


