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Lecture 30:
Direct product of groups.

Quotient group.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Proposition 1 The closure axiom holds for the operation • if
and only if it holds for both ∗ and ⋆.

Proposition 2 The operation • is associative if and only if
both ∗ and ⋆ are associative.

Proposition 3 A pair (eG , eH) is the identity element in
G × H if and only if eG is the identity element in G and eH is
the identity element in H.

Proposition 4 (g ′, h′) = (g , h)−1 in G × H if and only if
g ′ = g−1 in G and h′ = h−1 in H.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Theorem The set G × H with the operation • is a group if
and only if both (G , ∗) and (H, ⋆) are groups.

The group G × H is called the direct product of the groups
G and H. Usually the same notation (multiplicative or
additive) is used for all three groups:

(g1, h1)(g2, h2) = (g1g2, h1h2) or
(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2).

Similarly, we can define the direct product G1 × G2 × · · · × Gn

of any finite collection of groups G1,G2, . . . ,Gn.



Example. Z2 × Z3 (with addition in Z2 and Z3).

The group consists of 6 elements. It is Abelian since Z2 and
Z3 are both Abelian. The identity element is ([0]2, [0]3).
Let g = ([1]2, [1]3). Then 2g = g + g = ([0]2, [2]3),
3g = ([1]2, [0]3), 4g = ([0]2, [1]3), 5g = ([1]2, [2]3), and
6g = ([0]2, [0]3). It follows that Z2 × Z3 is a cyclic group,
Z2 × Z3 = 〈g〉.

Theorem If g has finite order in a group G and h has finite
order in a group H, then (g , h) has finite order in G × H

equal to lcm(o(g), o(h)).

Theorem The direct product of nontrivial cyclic groups is
cyclic if and only if they are all finite and their orders are
pairwise coprime.

For example, groups Z3 × Z5, Z4 × Z15, and Z2 × Z5 × Z7

are cyclic while groups Z4 × Z6, Z2 × Z2 × Z3, Z3 × Z, and
Z× Z are not.



Quotient space

Let X be a nonempty set and ∼ be an equivalence relation on
X . Given an element x ∈ X , the equivalence class of x ,
denoted [x ]∼ or simply [x ], is the set of all elements of X that
are equivalent (i.e., related by ∼) to x :

[x ]∼ = {y ∈ X | y ∼ x}.

Theorem Equivalence classes of the relation ∼ form a
partition of the set X .

The set of all equivalence classes of ∼ is denoted X/∼ and
called the quotient space (or factor space) of X by the
relation ∼.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the quotient space X/∼.



Examples of quotient spaces

• X = Z, x ∼ y if and only if x ≡ y mod n.

Equivalence class of an integer m is the congruence class
modulo n, [m]∼ = [m]n = m + nZ. The quotient space Z/∼
is Zn.

• X = G , a group; x ∼ y if and only if x ∈ yH ,

where H is a subgroup.

Equivalence class of an element g ∈ G is the coset of the
subgroup H, [g ]∼ = gH. The quotient space G/∼ is the set
of all cosets of H in G . In this example, the quotient space is
usually denoted G/H.

Remark. The first example is a particular case of the second,
when G = Z and H = nZ. Hence Zn = Z/nZ.



Quotient group

Let G be a nonempty set with a binary operation ∗, which is
well defined (i.e., the closure axiom holds). Given an
equivalence relation ∼ on G , we say that the relation ∼ is
compatible with the operation ∗ if for any g1, g2, h1, h2 ∈ G ,

g1 ∼ g2 and h1 ∼ h2 =⇒ g1 ∗ h1 ∼ g2 ∗ h2.

If this is the case, we can define an operation on the quotient
space G/∼ by [g ] ⋆ [h] = [g ∗ h] for all g , h ∈ G . Note
that the operation ⋆ is well defined: if [g ′] = [g ] and
[h′] = [h] then [g ′ ∗ h′] = [g ∗ h].

If the operation ∗ is associative (commutative, resp.), then so
is ⋆. If e is the identity element for ∗, then its equivalence
class [e] is the identity element for ⋆. If h = g−1 in (G , ∗),
then [h] = [g ]−1 in (G/∼, ⋆).

Thus, if (G , ∗) is a group then (G/∼, ⋆) is also a group
called the quotient group.



Quotient group

Question. When is an equivalence relation ∼ on

a group G compatible with the operation?

Theorem Assume that the quotient space G/∼ is
also a quotient group. Then

(i) H = [e]∼, the equivalence class of the identity
element, is a subgroup of G ,
(ii) [g ]∼ = gH for all g ∈ G ,

(iii) G/∼ = G/H ,
(iv) the subgroup H is normal, which means that

ghg−1 ∈ H for all h ∈ H and g ∈ G .

Theorem If H is a normal subgroup of a group G ,
then G/H is a quotient group.


