MATH 433
Applied Algebra

Lecture 30:
 Direct product of groups.
 Quotient group.

Direct product of groups

Given nonempty sets G and H, the Cartesian product $G \times H$ is the set of all ordered pairs (g, h) such that $g \in G$ and $h \in H$. Suppose $*$ is a binary operation on G and \star is a binary operation on H. Then we can define a binary operation

- on $G \times H$ by

$$
\left(g_{1}, h_{1}\right) \bullet\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \star h_{2}\right) .
$$

Proposition 1 The closure axiom holds for the operation - if and only if it holds for both $*$ and $*$.
Proposition 2 The operation \bullet is associative if and only if both $*$ and \star are associative.
Proposition 3 A pair $\left(e_{G}, e_{H}\right)$ is the identity element in $G \times H$ if and only if e_{G} is the identity element in G and e_{H} is the identity element in H.
Proposition $4\left(g^{\prime}, h^{\prime}\right)=(g, h)^{-1}$ in $G \times H$ if and only if $g^{\prime}=g^{-1}$ in G and $h^{\prime}=h^{-1}$ in H.

Direct product of groups

Given nonempty sets G and H, the Cartesian product $G \times H$ is the set of all ordered pairs (g, h) such that $g \in G$ and $h \in H$. Suppose $*$ is a binary operation on G and \star is a binary operation on H. Then we can define a binary operation

- on $G \times H$ by

$$
\left(g_{1}, h_{1}\right) \bullet\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \star h_{2}\right) .
$$

Theorem The set $G \times H$ with the operation \bullet is a group if and only if both $(G, *)$ and (H, \star) are groups.
The group $G \times H$ is called the direct product of the groups G and H. Usually the same notation (multiplicative or additive) is used for all three groups:

$$
\begin{aligned}
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) & =\left(g_{1} g_{2}, h_{1} h_{2}\right) \text { or } \\
\left(g_{1}, h_{1}\right)+\left(g_{2}, h_{2}\right) & =\left(g_{1}+g_{2}, h_{1}+h_{2}\right) .
\end{aligned}
$$

Similarly, we can define the direct product $G_{1} \times G_{2} \times \cdots \times G_{n}$ of any finite collection of groups $G_{1}, G_{2}, \ldots, G_{n}$.

Example. $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ (with addition in \mathbb{Z}_{2} and \mathbb{Z}_{3}).
The group consists of 6 elements. It is Abelian since \mathbb{Z}_{2} and \mathbb{Z}_{3} are both Abelian. The identity element is $\left([0]_{2},[0]_{3}\right)$. Let $g=\left([1]_{2},[1]_{3}\right)$. Then $2 g=g+g=\left([0]_{2},[2]_{3}\right)$, $3 g=\left([1]_{2},[0]_{3}\right), 4 g=\left([0]_{2},[1]_{3}\right), 5 g=\left([1]_{2},[2]_{3}\right)$, and $6 \mathrm{~g}=\left([0]_{2},[0]_{3}\right)$. It follows that $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is a cyclic group, $\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\langle g\rangle$.

Theorem If g has finite order in a group G and h has finite order in a group H, then (g, h) has finite order in $G \times H$ equal to $\operatorname{lcm}(o(g), o(h))$.

Theorem The direct product of nontrivial cyclic groups is cyclic if and only if they are all finite and their orders are pairwise coprime.
For example, groups $\mathbb{Z}_{3} \times \mathbb{Z}_{5}, \mathbb{Z}_{4} \times \mathbb{Z}_{15}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$ are cyclic while groups $\mathbb{Z}_{4} \times \mathbb{Z}_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}$, and $\mathbb{Z} \times \mathbb{Z}$ are not.

Quotient space

Let X be a nonempty set and \sim be an equivalence relation on X. Given an element $x \in X$, the equivalence class of x, denoted $[x]_{\sim}$ or simply $[x]$, is the set of all elements of X that are equivalent (i.e., related by \sim) to x :

$$
[x]_{\sim}=\{y \in X \mid y \sim x\}
$$

Theorem Equivalence classes of the relation \sim form a partition of the set X.

The set of all equivalence classes of \sim is denoted X / \sim and called the quotient space (or factor space) of X by the relation \sim.

In the case when the set X carries some structure (algebraic, geometric, analytic, etc.), this structure may (or may not) induce an analogous structure on the quotient space X / \sim.

Examples of quotient spaces

- $X=\mathbb{Z}, x \sim y$ if and only if $x \equiv y \bmod n$.

Equivalence class of an integer m is the congruence class modulo $n,[m]_{\sim}=[m]_{n}=m+n \mathbb{Z}$. The quotient space \mathbb{Z} / \sim is \mathbb{Z}_{n}.

- $X=G$, a group; $x \sim y$ if and only if $x \in y H$, where H is a subgroup.
Equivalence class of an element $g \in G$ is the coset of the subgroup $H,[g]_{\sim}=g H$. The quotient space G / \sim is the set of all cosets of H in G. In this example, the quotient space is usually denoted G / H.

Remark. The first example is a particular case of the second, when $G=\mathbb{Z}$ and $H=n \mathbb{Z}$. Hence $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$.

Quotient group

Let G be a nonempty set with a binary operation $*$, which is well defined (i.e., the closure axiom holds). Given an equivalence relation \sim on G, we say that the relation \sim is compatible with the operation $*$ if for any $g_{1}, g_{2}, h_{1}, h_{2} \in G$,

$$
g_{1} \sim g_{2} \text { and } h_{1} \sim h_{2} \Longrightarrow g_{1} * h_{1} \sim g_{2} * h_{2}
$$

If this is the case, we can define an operation on the quotient space G / \sim by $[g] \star[h]=[g * h]$ for all $g, h \in G$. Note that the operation \star is well defined: if $\left[g^{\prime}\right]=[g]$ and $\left[h^{\prime}\right]=[h]$ then $\left[g^{\prime} * h^{\prime}\right]=[g * h]$.
If the operation $*$ is associative (commutative, resp.), then so is \star. If e is the identity element for $*$, then its equivalence class [e] is the identity element for \star. If $h=g^{-1}$ in $(G, *)$, then $[h]=[g]^{-1}$ in $(G / \sim, \star)$.
Thus, if $(G, *)$ is a group then $(G / \sim, \star)$ is also a group called the quotient group.

Quotient group

Question. When is an equivalence relation \sim on a group G compatible with the operation?

Theorem Assume that the quotient space G / \sim is also a quotient group. Then
(i) $H=[e]_{\sim}$, the equivalence class of the identity element, is a subgroup of G,
(ii) $[g]_{\sim}=g H$ for all $g \in G$,
(iii) $G / \sim=G / H$,
(iv) the subgroup H is normal, which means that $\mathrm{ghg}^{-1} \in H$ for all $h \in H$ and $g \in G$.
Theorem If H is a normal subgroup of a group G, then G / H is a quotient group.

