MATH 433
Applied Algebra
Lecture 35:
Greatest common divisor of polynomials. Factorisation of polynomials.

Greatest common divisor

Definition. Given non-zero polynomials $f, g \in \mathbb{F}[x]$, a greatest common divisor $\operatorname{gcd}(f, g)$ is a polynomial over the field \mathbb{F} such that (i) $\operatorname{gcd}(f, g)$ divides f and g, and (ii) if any $p \in \mathbb{F}[x]$ divides both f and g, then it divides $\operatorname{gcd}(f, g)$ as well.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Proof: Let S denote the set of all polynomials of the form $u f+v g$, where $u, v \in \mathbb{F}[x]$. The set S contains non-zero polynomials, say, f and g. Let $d(x)$ be any such polynomial of the least possible degree. It is easy to show that the remainder under division of any polynomial $h \in S$ by d belongs to S as well. By the choice of d, that remainder must be zero. Hence d divides every polynomial in S. In particular, d is a common divisor of f and g. Further, if any $p(x) \in \mathbb{F}[x]$ divides both f and g, then it also divides every element of S. In particular, it divides d. Thus $d=\operatorname{gcd}(f, g)$.
Now assume d_{1} is another greatest common divisor of f and g. By definition, d_{1} divides d and d divides d_{1}. This is only possible if d and d_{1} are scalar multiples of each other.

Euclidean algorithm

Lemma 1 If a polynomial g divides a polynomial f then $\operatorname{gcd}(f, g)=g$.

Lemma 2 If g does not divide f and r is the remainder of f by g, then $\operatorname{gcd}(f, g)=\operatorname{gcd}(g, r)$.

Theorem For any non-zero polynomials
$f, g \in \mathbb{F}[x]$ there exists a sequence of polynomials $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{F}[x]$ such that $r_{1}=f, r_{2}=g$, r_{i} is the remainder of r_{i-2} by r_{i-1} for $3 \leq i \leq k$, and r_{k} divides r_{k-1}. Then $\operatorname{gcd}(f, g)=r_{k}$.

Irreducible polynomials

Definition. A polynomial $f \in \mathbb{F}[x]$ is said to be irreducible over \mathbb{F} if it cannot be written as $f=g h$, where $g, h \in \mathbb{F}[x]$, and $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.
Irreducible polynomials are for multiplication of polynomials what prime numbers are for multiplication of integers.

Proposition 1 Let f be an irreducible polynomial and suppose that f divides a product $f_{1} f_{2}$. Then f divides at least one of the polynomials f_{1} and f_{2}.

Proposition 2 Let f be an irreducible polynomial and suppose that f divides a product of polynomials $f_{1} f_{2} \ldots f_{r}$. Then f divides at least one of the factors $f_{1}, f_{2}, \ldots, f_{r}$.

Proposition 3 Let f be an irreducible polynomial that divides a product $f_{1} f_{2} \ldots f_{r}$ of other irreducible polynomials. Then one of the factors $f_{1}, f_{2}, \ldots, f_{r}$ is a scalar multiple of f.

Unique factorisation

Theorem Any polynomial $f \in \mathbb{F}[x]$ of positive degree admits a factorisation $f=p_{1} p_{2} \ldots p_{k}$ into irreducible factors over \mathbb{F}. This factorisation is unique up to rearranging the factors and multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong induction on $\operatorname{deg}(f)$. It is based on a simple fact: if $p_{1} p_{2} \ldots p_{s}$ is an irreducible factorisation of f and $q_{1} q_{2} \ldots q_{t}$ is an irreducible factorisation of g, then $p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{t}$ is an irreducible factorisation of $f g$.

The uniqueness is proved by (normal) induction on the number of irreducible factors. It is based on a (not so simple) fact: if an irreducible polynomial p divides a product of irreducible polynomials $q_{1} q_{2} \ldots q_{t}$ then one of the factors q_{1}, \ldots, q_{t} is a scalar multiple of p.

Factorisation over \mathbb{C} and \mathbb{R}

Clearly, any polynomial $f \in \mathbb{F}[x]$ of degree 1 is irreducible over \mathbb{F}. Depending on the field \mathbb{F}, there may exist other irreducible polynomials as well.

Fundamental Theorem of Algebra Any nonconstant polynomial over the field \mathbb{C} has a root.

Corollary 1 The only irreducible polynomials over the field \mathbb{C} of complex numbers are linear polynomials. Equivalently, any polynomial $f \in \mathbb{C}[x]$ of a positive degree n can be factorised as $f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$, where $c, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and $c \neq 0$.

Corollary 2 The only irreducible polynomials over the field \mathbb{R} of real numbers are linear polynomials and quadratic polynomials without real roots.

Examples of factorisation

- $f(x)=x^{4}-1$ over \mathbb{R}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$.
The polynomial $x^{2}+1$ is irreducible over \mathbb{R}.
- $f(x)=x^{4}-1$ over \mathbb{C}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$
$=(x-1)(x+1)(x-i)(x+i)$.
- $f(x)=x^{4}-1$ over \mathbb{Z}_{5}.

It follows from Fermat's Little Theorem that any non-zero element of the field \mathbb{Z}_{5} is a root of the polynomial f. Hence f has 4 distinct roots. By the Unique Factorisation Theorem,

$$
\begin{aligned}
f(x) & =(x-1)(x-2)(x-3)(x-4) \\
& =(x-1)(x+1)(x-2)(x+2) .
\end{aligned}
$$

- $f(x)=x^{4}-1$ over \mathbb{Z}_{7}.

Note that the polynomial $x^{4}-1$ can be considered over any field. Moreover, the expansion $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)$ $=(x-1)(x+1)\left(x^{2}+1\right)$ holds over any field. It depends on the field whether the polynomial $g(x)=x^{2}+1$ is irreducible. Over the field \mathbb{Z}_{7}, we have $g(0)=1, g(\pm 1)=2, g(\pm 2)=5$ and $g(\pm 3)=10=3$. Hence g has no roots. For polynomials of degree 2 or 3 , this implies irreducibility.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{17}.

The polynomial $x^{2}+1$ has roots ± 4. It follows that $f(x)=(x-1)(x+1)\left(x^{2}+1\right)=(x-1)(x+1)(x-4)(x+4)$.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{2}.

For this field, we have $1+1=0$ so that $-1=1$. Hence $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2}$ $=(x-1)^{4}$.

