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Lecture 35:
Greatest common divisor of polynomials.

Factorisation of polynomials.



Greatest common divisor

Definition. Given non-zero polynomials f , g ∈ F[x ],
a greatest common divisor gcd(f , g) is a
polynomial over the field F such that (i) gcd(f , g)

divides f and g , and (ii) if any p ∈ F[x ] divides
both f and g , then it divides gcd(f , g) as well.

Theorem The polynomial gcd(f , g) exists and is
unique up to a scalar multiple. Moreover, it is a

non-zero polynomial of the least degree that can be
represented as uf + vg , where u, v ∈ F[x ].



Theorem The polynomial gcd(f , g) exists and is unique up
to a scalar multiple. Moreover, it is a non-zero polynomial of
the least degree that can be represented as uf + vg , where
u, v ∈ F[x ].

Proof: Let S denote the set of all polynomials of the form
uf + vg , where u, v ∈ F[x ]. The set S contains non-zero
polynomials, say, f and g . Let d(x) be any such polynomial
of the least possible degree. It is easy to show that the
remainder under division of any polynomial h ∈ S by d

belongs to S as well. By the choice of d , that remainder must
be zero. Hence d divides every polynomial in S . In
particular, d is a common divisor of f and g . Further, if any
p(x) ∈ F[x ] divides both f and g , then it also divides every
element of S . In particular, it divides d . Thus d = gcd(f , g).

Now assume d1 is another greatest common divisor of f and
g . By definition, d1 divides d and d divides d1. This is only
possible if d and d1 are scalar multiples of each other.



Euclidean algorithm

Lemma 1 If a polynomial g divides a polynomial f

then gcd(f , g) = g .

Lemma 2 If g does not divide f and r is the
remainder of f by g , then gcd(f , g) = gcd(g , r).

Theorem For any non-zero polynomials

f , g ∈ F[x ] there exists a sequence of polynomials
r1, r2, . . . , rk ∈ F[x ] such that r1 = f , r2 = g , ri is
the remainder of ri−2 by ri−1 for 3 ≤ i ≤ k , and rk
divides rk−1. Then gcd(f , g) = rk .



Irreducible polynomials

Definition. A polynomial f ∈ F[x ] is said to be irreducible
over F if it cannot be written as f = gh, where g , h ∈ F[x ],
and deg(g), deg(h) < deg(f ).

Irreducible polynomials are for multiplication of polynomials
what prime numbers are for multiplication of integers.

Proposition 1 Let f be an irreducible polynomial and
suppose that f divides a product f1f2. Then f divides at least
one of the polynomials f1 and f2.

Proposition 2 Let f be an irreducible polynomial and
suppose that f divides a product of polynomials f1f2 . . . fr .
Then f divides at least one of the factors f1, f2, . . . , fr .

Proposition 3 Let f be an irreducible polynomial that
divides a product f1f2 . . . fr of other irreducible polynomials.
Then one of the factors f1, f2, . . . , fr is a scalar multiple of f .



Unique factorisation

Theorem Any polynomial f ∈ F[x ] of positive degree admits
a factorisation f = p1p2 . . . pk into irreducible factors over F.
This factorisation is unique up to rearranging the factors and
multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong
induction on deg(f ). It is based on a simple fact: if
p1p2 . . . ps is an irreducible factorisation of f and q1q2 . . . qt
is an irreducible factorisation of g , then p1p2 . . . psq1q2 . . . qt
is an irreducible factorisation of fg .

The uniqueness is proved by (normal) induction on the
number of irreducible factors. It is based on a (not so simple)
fact: if an irreducible polynomial p divides a product of
irreducible polynomials q1q2 . . . qt then one of the factors
q1, . . . , qt is a scalar multiple of p.



Factorisation over C and R

Clearly, any polynomial f ∈ F[x ] of degree 1 is irreducible
over F. Depending on the field F, there may exist other
irreducible polynomials as well.

Fundamental Theorem of Algebra Any nonconstant
polynomial over the field C has a root.

Corollary 1 The only irreducible polynomials over the field C

of complex numbers are linear polynomials. Equivalently, any
polynomial f ∈ C[x ] of a positive degree n can be factorised
as f (x) = c(x − α1)(x − α2) . . . (x − αn), where
c, α1, . . . , αn ∈ C and c 6= 0.

Corollary 2 The only irreducible polynomials over the field R

of real numbers are linear polynomials and quadratic
polynomials without real roots.



Examples of factorisation

• f (x) = x4 − 1 over R.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1).
The polynomial x2 + 1 is irreducible over R.

• f (x) = x4 − 1 over C.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1)
= (x − 1)(x + 1)(x − i)(x + i).

• f (x) = x4 − 1 over Z5.

It follows from Fermat’s Little Theorem that any non-zero
element of the field Z5 is a root of the polynomial f . Hence f

has 4 distinct roots. By the Unique Factorisation Theorem,

f (x) = (x − 1)(x − 2)(x − 3)(x − 4)
= (x − 1)(x + 1)(x − 2)(x + 2).



• f (x) = x4 − 1 over Z7.

Note that the polynomial x4 − 1 can be considered over any
field. Moreover, the expansion x4 − 1 = (x2 − 1)(x2 + 1)
= (x − 1)(x + 1)(x2 + 1) holds over any field. It depends on
the field whether the polynomial g(x) = x2 + 1 is irreducible.
Over the field Z7, we have g(0) = 1, g(±1) = 2, g(±2) = 5
and g(±3) = 10 = 3. Hence g has no roots. For
polynomials of degree 2 or 3, this implies irreducibility.

• f (x) = x4 − 1 over Z17.

The polynomial x2 + 1 has roots ±4. It follows that
f (x) = (x − 1)(x +1)(x2 +1) = (x − 1)(x +1)(x − 4)(x + 4).

• f (x) = x4 − 1 over Z2.

For this field, we have 1 + 1 = 0 so that −1 = 1. Hence
x4 − 1 = (x2 − 1)(x2 + 1) = (x2 − 1)2 = (x − 1)2(x + 1)2

= (x − 1)4.


