MATH 433
Applied Algebra
Lecture 36:
Factorisation of polynomials (continued). Factorisation in general rings.

Unique factorisation of polynomials

Definition. A non-constant polynomial $f \in \mathbb{F}[x]$ over a field \mathbb{F} is said to be irreducible over \mathbb{F} if it cannot be written as $f=g h$, where $g, h \in \mathbb{F}[x]$, and $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.
Irreducible polynomials are for multiplication of polynomials what prime numbers are for multiplication of integers.

Theorem Any polynomial $f \in \mathbb{F}[x]$ of positive degree admits a factorisation $f=p_{1} p_{2} \ldots p_{k}$ into irreducible factors over \mathbb{F}. This factorisation is unique up to rearranging the factors and multiplying them by non-zero scalars.

Some facts and examples

- Any polynomial of degree 1 is irreducible.
- A polynomial $p(x) \in \mathbb{F}[x]$ is divisible by a polynomial of degree 1 if and only if it has a root. Indeed, if $p(\alpha)=0$ for some $\alpha \in \mathbb{F}$, then $p(x)$ is divisible by $x-\alpha$. Conversely, if $p(x)$ is divisible by $a x+b$ for some $a, b \in \mathbb{F}, a \neq 0$, then p has a root $-b / a$.
- A polynomial of degree 2 or 3 is irreducible if and only if it has no roots.
If such a polynomial splits into a product of two non-constant polynomials, then at least one of the factors is of degree 1.
- Polynomial $p(x)=\left(x^{2}+1\right)^{2}$ has no real roots, yet it is not irreducible over \mathbb{R}.
- Polynomial $p(x)=x^{3}+x^{2}-5 x+2$ is irreducible over \mathbb{Q}.
We only need to check that $p(x)$ has no rational roots. Since all coefficients are integers and the leading coefficient is 1 , possible rational roots are integer divisors of the constant term: ± 1 and ± 2. We check that $p(1)=-1, p(-1)=7$, $p(2)=9$ and $p(-2)=8$.
- If a polynomial $p(x) \in \mathbb{R}[x]$ is irreducible over \mathbb{R}, then $\operatorname{deg}(p)=1$ or 2 .
Assume $\operatorname{deg}(p)>1$. Then p has a complex root $\alpha=a+b i$ that is not real: $b \neq 0$. Complex conjugacy $\overline{r+s i}=r-s i$ commutes with arithmetic operations and preserves real numbers. Therefore $p(\bar{\alpha})=\overline{p(\alpha)}=0$ so that $\bar{\alpha}$ is another root of p. It follows that $p(x)$ is divisible by $(x-\alpha)(x-\bar{\alpha})$ $=x^{2}-(\alpha+\bar{\alpha}) x+\alpha \bar{\alpha}=x^{2}-2 a x+a^{2}+b^{2}$, which is a real polynomial. Then $p(x)$ must be a scalar multiple of it.

Problem. Find all common roots of real polynomials $p(x)=x^{4}+2 x^{3}-x^{2}-2 x+1$ and $q(x)=x^{4}+x^{3}+x-1$.

Common roots of p and q are exactly roots of their greatest common divisor $\operatorname{gcd}(p, q)$. We can find $\operatorname{gcd}(p, q)$ using the Euclidean algorithm.
First we divide p by q : $x^{4}+2 x^{3}-x^{2}-2 x+1=$
$=\left(x^{4}+x^{3}+x-1\right)(1)+x^{3}-x^{2}-3 x+2$.
Next we divide q by the remainder $r_{1}(x)=x^{3}-x^{2}-3 x+2$:
$x^{4}+x^{3}+x-1=\left(x^{3}-x^{2}-3 x+2\right)(x+2)+5 x^{2}+5 x-5$.
Next we divide r_{1} by the remainder $r_{2}(x)=5 x^{2}+5 x-5$:
$x^{3}-x^{2}-3 x+2=\left(5 x^{2}+5 x-5\right)\left(\frac{1}{5} x-\frac{2}{5}\right)$.
Since r_{2} divides r_{1}, it follows that

$$
\operatorname{gcd}(p, q)=\operatorname{gcd}\left(q, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=r_{2} .
$$

The polynomial $r_{2}(x)=5 x^{2}+5 x-5$ has roots $(-1-\sqrt{5}) / 2$ and $(-1+\sqrt{5}) / 2$.

Unity and units

Let R be an integral domain, i.e., a commutative ring with the multiplicative identity element and no zero-divisors. The multiplicative identity, denoted 1 , is also called the unity of R. Any element of R that has a multiplicative inverse is called a unit. All units of R form a multiplicative group.

Examples. - Integers \mathbb{Z}.
Units are 1 and -1 .

- Gaussian integers $\mathbb{Z}[\sqrt{-1}]=\{m+n i \in \mathbb{C} \mid m, n \in \mathbb{Z}\}$.

Units are $1,-1, i$, and $-i$.

- $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F}.

Units are all nonzero constants.

- $\mathbb{F}[[x]]$: formal power series in x over a field \mathbb{F}.

Units are all formal power series with nonzero constant terms.

Irreducible elements and factorisation

Let R be an integral domain. A non-zero, non-unit element of R is called irreducible if it cannot be represented as a product of two non-units.

The ring R is called a factorisation ring if every non-zero, non-unit element x can be expanded into a product $x=q_{1} q_{2} \ldots q_{k}$ of irreducible elements. Equivalently, $x=u q_{1} q_{2} \ldots q_{k}$, where u is a unit and each q_{i} is irreducible.
Two non-zero elements $x, y \in R$ are called associates of each other if x divides y and y divides x. An equivalent condition is that $y=u x$ for some unit u. Any associate of a unit (non-unit, irreducible, resp.) element is also a unit (non-unit, irreducible, resp.).
Suppose $x=u q_{1} q_{2} \ldots q_{k}$, where u is a unit and each q_{i} is irreducible. If $q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{k}^{\prime}$ are associates of $q_{1}, q_{2}, \ldots, q_{k}$, resp., then $x=u^{\prime} q_{1}^{\prime} q_{2}^{\prime} \ldots q_{k}^{\prime}$ for some unit u^{\prime}.

Examples of factorisation rings:

- Integers \mathbb{Z}.

Irreducible elements are primes and negative primes.
Factorisation into irreducibles is, up to a sign, the usual prime factorisation. For example, $-6=(-1) \cdot 2 \cdot 3=(-2) \cdot 3$
$=2 \cdot(-3)=(-1)(-2)(-3)$.

- Polynomials $\mathbb{F}[x]$.

Irreducible elements are exactly irreducible polynomials.
Example of a non-factorisation ring:

- $\mathbb{Z}+x \mathbb{Q}[x]$: polynomials over \mathbb{Q} with integer constant terms.

This is a subring of $\mathbb{Q}[x]$. Units are 1 and -1 . Irreducible elements are of the form $\pm p$, where p is a prime number, or $\pm q(x)$, where $q(x)$ is an irreducible polynomial over \mathbb{Q} with the constant term 1. No element with zero constant term is irreducible; for example, $x=2 \cdot \frac{1}{2} x$.

