MATH 433
Applied Algebra

Lecture 37:
Review for Exam 3.



Topics for Exam 3

Order of an element in a group
Subgroups

Cyclic groups

Cosets

Lagrange's Theorem
Isomorphism of groups

The ISBN code

Binary codes, error detection and error correction
Linear codes, generator matrix

Coset leaders, coset decoding table

Parity-check matrix, syndromes

Division of polynomials
Greatest common divisor of polynomials
Factorisation of polynomials



Sample problems

Problem 1. Suppose 7,0 € §(5) are
permutations of order 3. What are possible values
for the order of the permutation 7o.

Problem 2. Suppose H and K are subgroups of a
group G. Is the union HU K necessarily a
subgroup of G? Is the intersection HN K
necessarily a subgroup of G?

Problem 3. Prove that the group (Q\ {0}, %) is
not cyclic.



Sample problems

Problem 4. Suppose G is a group of order 125.
Show that G contains an element of order 5.

Problem 5. The group (Gis, X) has subgroups of
what orders?

Problem 6. Determine which of the following
groups of order 6 are isomorphic and which are not:
Z6, Zg X Zz, 5(3), and D(3)



Sample problems

Problem 7. Let f: B3 — B’ be the coding function that
sends each three-character word abc in the alphabet

B = {0,1} to the codeword abcabcy, where y is the inverted
parity bit of the word abc (i.e., y =0 if abc contains an
odd number of 1's and y =1 otherwise). How many errors
will this code detect? correct? Is this code linear?

Problem 8. Let f: B3 — B® be a linear coding function
defined by the generator matrix

100101
010110
001011

Suppose that a message encoded by this function is received
with errors as 101101 010101 011111. Correct errors and
decode the received message.



Sample problems

Problem 9. Find a greatest common divisor of
polynomials p(x) = x* — 2x3 +5x2 — 4x + 4 and
q(x) = 2x3 — 3x% + 5x — 2 over R,

Problem 10. Factorise a polynomial
p(x) = x3 — 3x% + 3x — 2 into irreducible factors
over the field Z;.



Problem 1. Suppose 7,0 € S(5) are permutations of order
3. What are possible values for the order of permutation 7o.

The order of a permutation equals the least common multiple
of the cycle lengths in its cycle decomposition. Hence it
equals 3 only if the cycles are of length 1 or 3 (at least one
cycle of length 3 is required). For permutations 7,0 € 5(5),
this implies that both are cycles of length 3.

Up to relabeling of the set {1,2,3,4,5}, we can assume that
m=(123). As for o, there are several possible choices:
0'1:(145), 0'2:(124), 0'3:(214), 0'4:(123), and
o5 = (1 32). Namely, o = oy if there is only one element
that both m and o move, ¢ = 05 or o3 if there are two such
elements, and o = 04 or o5 if m and 0 move the same three
elements.

We have moy; = (14523), o, = (13)(24), mos = (143),
moy = (132), and mos =id. Thus the order of 7o can be
1,2, 3 orb.



Problem 2. Suppose H and K are subgroups of a
group G. Is the union H U K necessarily a
subgroup of G? Is the intersection HN K
necessarily a subgroup of G?

The union HU K is a subgroup of G only if H C K or
K C H (so that HU K coincides with one of the subgroups
H and K).

Otherwise HU K is not closed under the group operation.
Indeed, if neither of the subgroups contains the other, we can
find an element h € H\ K and an element k € K\ H. Let
g = hk. Then g & H as otherwise k = h™lg € H, a
contradiction. Similarly, g ¢ K as otherwise h = gk™! € K,
another contradiction. Thus h,k € HUK while hk ¢ HUK.

The intersection H N K of two subgroups is always a
subgroup (see lecture notes and the textbook).



Problem 3. Prove that the group (Q\ {0}, %) is
not cyclic.

Take any non-zero rational number r. It can be represented

i m
as a reduced fraction: r = —, where m and n are non-zero
n

integers and gcd(m, n) = 1.
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. : . m m- m
The cyclic group (r) consists of fractions —, —, —, ...,
n’" n? nd
_ n n* n _
fractions —, —, —,..., and 1. Note that all fractions are
m m? m
reduced.

The numbers m and n can have only finitely many prime
divisors. Since there are infinitely many prime numbers,
we can find a prime number p that divides neither m nor n.

It is easy to see that p & (r). Thus (r) # Q\ {0}.



Problem 4. Suppose G is a group of order 125.
Show that G contains an element of order 5.

It follows from Lagrange's Theorem that the order of any
element of the group G divides 125. Hence the only orders we
can expect are 1, 5, 25, and 125.

Let g be any element of G different from the identity element.
Then the order of g is 5, 25 or 125.

If o(g) =5 then we are done.

If o(g) =25 then the element g° has order 5.

If o(g) =125 then the element g has order 5.



Problem 5. The group (Gis, X) has subgroups of
what orders?

Gis is the multiplicative group of invertible congruence classes
modulo 15. It has 8 elements:

(1], 2], [4], [7], 8], [11], [13], [14].

By Lagrange's Theorem, a subgroup of Gi5 can be of order 1,
2, 4 or 8. First we find the cyclic subgroups of Gis5. These are

{413, {0, 1413, {[) [l Q4] (1413, {[1], (2], [4], [8]}. and
{[1], [41, [71, T3]}

Hence we have cyclic subgroups of orders 1, 2 and 4. Also,
the entire group Gis is a subgroup of order 8.

Remark. The only other subgroup of Gis is a non-cyclic group

{[1], [4], [11], [14]}.



Problem 6. Determine which of the following groups of
order 6 are isomorphic and which are not: Zg, Zs x Z,, S(3),
and D(3).

Zs X Z, is an additive group, where the addition is defined by
(g, h)+(g',h)=(g+g',h+ H). ltiseasy to check that
the element ([1]3, [1]2) has order 6. Therefore it generates
the entire group so that Zsz x Z, is cyclic. Hence it is
isomorphic to Zg as another cyclic group of order 6.

D(3) is a dihedral group, the group of symmetries of an
equilateral triangle. Any symmetry permutes vertices of the
triangle. Once we label the vertices as 1, 2, and 3, each
symmetry from D(3) is assigned a permutation from the
symmetric group S(3). This correspondence is actually an
isomorphism.

Neither of the groups Zg and Zs x Z, is isomorphic to S(3)
or D(3) since the first two groups are commutative while the
other two are not.



Problem 7. Let f: B3 — B’ be the coding function that
sends each three-character word abc in the alphabet

B = {0,1} to the codeword abcabcy, where y is the inverted
parity bit of the word abc (i.e., y =0 if abc contains an
odd number of 1's and y =1 otherwise). How many errors
will this code detect? correct? Is this code linear?

First we list all 8 codewords for the given code:

0000001, 0010010, 0100100, 0110111,
1001000, 1011011, 1101101, 1111110.

Then we determine the minimum distance between distinct
codewords. By inspection, it is 3. Therefore the code allows
to detect 2 errors and to correct 1 error.

For any linear code, the set of codewords is a subspace of
some B". As a consequence, it contains the zero word. Since
the zero word is not a codeword for the function f, this code is
not linear.



Problem 8. Let f: B3 — B be a linear coding function
defined by the generator matrix

1 00101
010110}
001011

Suppose that a message encoded by this function is received
with errors as 101101 010101 011111. Correct errors and
decode the received message.

The coding function is given by f(w) = wG, where G is the
generator matrix and w is regarded as a row vector. The 8
codewords are linear combinations of rows of the generator
matrix:

000000, 001011, 010110, 011101,
100101, 101110, 110011, 111000.

Every received word is corrected to the closest codeword. The
corrected message is 100101 011101 011101. Since the
code is systematic, decoding consists of truncating the
codewords to 3 digits: 100 011 011.



Problem 9. Find a greatest common divisor of polynomials
p(x) =x*—2x3+5x> —4x+4 and
g(x) =2x> —3x® +5x — 2 over R.

gecd(p, g) can be found using the Euclidean algorithm. First
we divide p by q: x* —2x3 4+ 5x2 —4x + 4 =

= (23 =3x2+5x = 2)(3x — 1) + ix* — Ix+ 1.

Hence ged(p, q) = ged(q, r), where r(x) = 2x* — Ix+ 1 is
the remainder of p by g. It is convenient to replace the
polynomial r by its scalar multiple 7(x) = 4r(x) = x> — x + 2.

Clearly, gcd(q, r) = gcd(q, 7).

Next we divide g by ¥:

2x3 —3x2 +5x — 2= (x> — x + 2)(2x — 1).
Since ¥ divides g, it follows that gcd(gq,¥) =

Finally, gcd(p,q) = x? — x + 2.



Problem 10. Factorise a polynomial p(x) = x>—3x>+3x—2
into irreducible factors over the field Z-.

A quadratic or cubic polynomial is irreducible if and only if it
has no roots. Indeed, if such a polynomial splits into a
product of two non-constant polynomials, then at least one of
the factors is linear. This implies that the original polynomial
has a root.

Let us look for the roots of p(x): p(0) = -2, p(1) = —1,
p(2) = 0. Hence p(x) is divisible by x — 2:
x3—=3x2+3x—2=(x—2)(x*—x+1).

Now let us look for the roots of the polynomial

g(x) = x> — x+ 1. Note that values 0 and 1 can be skipped
this time. We obtain q(2) =3, ¢(3) =0. Hence g(x) is
divisible by x —3: x> —x+ 1= (x —3)(x +2).

Thus x3 —3x% +3x —2 = (x —2)(x — 3)(x +2) over the
field Zs.



