MATH 433

Lecture 38: Factorisation in general rings (continued).

Applied Algebra

ed Algebra

Factorisation into irreducible elements

Let *R* be an **integral domain**, i.e., a commutative ring with the multiplicative identity element and no zero-divisors.

Any element of R that has a multiplicative inverse is called a **unit**. All units of R form a multiplicative group.

A non-zero, non-unit element of R is called **irreducible** if it cannot be represented as a product of two non-units.

The ring R is called a **factorisation ring** if every non-zero, non-unit element x can be expanded into a product $x = uq_1q_2 \dots q_k$, where u is a unit and each q_i is irreducible.

If x is an irreducible element and u is a unit, then y = ux is irreducible as well (y is called an **associate** of x).

Suppose $x = uq_1q_2 \dots q_k$, where u is a unit and each q_i is irreducible. If q'_1, q'_2, \dots, q'_k are associates of q_1, q_2, \dots, q_k , resp., then $x = u'q'_1q'_2 \dots q'_k$ for some unit u'.

Examples of factorisation rings:

• Integers \mathbb{Z} .

Units are 1 and -1. Irreducible elements are primes and negative primes. Factorisation into irreducibles is, up to a sign, the usual prime factorisation. It is unique up to rearranging the factors and changing their signs. For example, $-6 = (-1) \cdot 2 \cdot 3 = (-2) \cdot 3 = 2 \cdot (-3) = (-3) \cdot 2$.

• Polynomials $\mathbb{F}[x]$.

with zero constant term.

Units are all nonzero constants. Irreducible elements are exactly irreducible polynomials. Factorisation into irreducibles is unique up to rearranging the factors and multiplying them by constants.

Example of a non-factorisation ring:

• $\mathbb{Z} + x\mathbb{Q}[x]$: polynomials over \mathbb{Q} with integer constant terms. Factorisation into irreducibles is not possible for polynomials

Integral norm

Let R be an integral domain. A function $N: R \setminus \{0\} \to \mathbb{Z}$ is called an **integral norm** on R if

- N(xy) = N(x)N(y) for all $x, y \in R \setminus \{0\}$,
- N(x) > 0 for all $x \in R \setminus \{0\}$,
- N(x) = 1 if and only if x is a unit.

Theorem If R admits an integral norm N then it is a factorisation ring.

Proof: The proof is by strong induction on n = N(x), where x is a non-unit. Assume that factorisation is possible for all non-units y with N(y) < n. If x is irreducible, we are done. Otherwise x = yz, where y and z are non-units. Then N(y), N(z) > 1 and N(y)N(z) = n, hence N(y), N(z) < n. By the inductive assumption, $y = uq_1q_2 \dots q_k$ and $z = u'q'_1q'_2 \dots q'_s$, where all q_i and q'_j are irreducible and u, u' are units. Then $x = (uu')q_1q_2 \dots q_kq'_1q'_2 \dots q'_s$, which completes the induction step.

Examples of integral norms

• Integers \mathbb{Z} .

$$N(n) = |n|$$
.

- $\mathbb{F}[x]$: polynomials in a variable x over a field \mathbb{F} .
- $N(p) = 2^{\deg(p)}$.
- Gaussian integers $\mathbb{Z}[\sqrt{-1}] = \{m + ni \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$ $N(m + ni) = (m + ni)(\overline{m + ni}) = \underline{m}^2 + n^2.$ If N(m + ni) = 1

then $(m+ni)^{-1} = m-ni \in \mathbb{Z}[\sqrt{-1}]$ so that m+ni is a unit. Not every prime integer is irreducible in this ring. For example, 2 = (1+i)(1-i), 5 = (2+i)(2-i).

•
$$\mathbb{Z}[\sqrt{3}] = \{m + n\sqrt{3} \mid m, n \in \mathbb{Z}\}.$$

 $N(m+n\sqrt{3})=|(m+n\sqrt{3})(m-n\sqrt{3})|=|m^2-3n^2|.$ It turns out that the map $\phi:\mathbb{Z}[\sqrt{3}]\to\mathbb{Z}[\sqrt{3}]$ defined by $\phi(m+n\sqrt{3})=m-n\sqrt{3}$ for all $m,n\in\mathbb{Z}$ satisfies $\phi(xy)=\phi(x)\phi(y)$ for all $x,y\in\mathbb{Z}[\sqrt{3}].$

Unique factorisation

Let R be a factorisation ring. We say that R is a **unique** factorisation domain if factorisation of any non-unit element of R into a product of irreducible elements is unique up to rearranging the factors and multiplying them by units.

A non-zero, non-unit element $x \in R$ is called **prime** if, whenever x divides a product yz of two non-zero elements, it actually divides one of the factors y and z.

Proposition Every prime element is irreducible.

Theorem A factorisation ring is a unique factorisation domain if and only if every irreducible element is prime.

Example of non-unique factorisation:

•
$$\mathbb{Z}[\sqrt{-5}] = \{m + ni\sqrt{5} \in \mathbb{C} \mid m, n \in \mathbb{Z}\}.$$

Integral norm: $N(z) = z\overline{z}$, $N(m + ni\sqrt{5}) = m^2 + 5n^2$. The norm can never equal 2 or 3. Hence any element of norm 4, 6 or 9 is irreducible. Now $6 = 2 \cdot 3 = (1 + i\sqrt{5})(1 - i\sqrt{5})$.

Euclidean rings

Let R be an integral domain. A function $E: R \setminus \{0\} \to \mathbb{Z}_+$ is called a **Euclidean function** on R if for any $x, y \in R \setminus \{0\}$ we have x = qy + r for some $q, r \in R$ such that r = 0 or E(r) < E(y).

In a Euclidean ring, division with remainder is well defined.

Many Euclidean rings admit a **multiplicative Euclidean function**, which is both a Euclidean function and an integral norm.

Theorem 1 Any Euclidean ring is a factorisation ring.

Theorem 2 In a Euclidean ring, any irreducible element is prime.

Corollary Any Euclidean ring is a unique factorisation domain.

Greatest common divisor

In a Euclidean ring R, any two non-zero elements $x,y\in R$ admit a **greatest common divisor** $\gcd(x,y)$, that is, a common divisor divisible by any other common divisor. $\gcd(x,y)$ is unique up to multiplication by a unit. It can be found by the Euclidean algorithm, which also leads to a representation $\gcd(x,y)=ax+by$, where $a,b\in R$.

Theorem In a Euclidean ring R, any irreducible element is prime.

Proof: Suppose $x \in R$ is an irreducible element that divides a product yz of two non-zero elements. We need to show that x divides one of the factors y and z.

Since x is irreducible, it follows that gcd(x, y) = 1 or x. If gcd(x, y) = x then x divides y. If gcd(x, y) = 1 then 1 = ax + by for some $a, b \in R$. Consequently, z = (ax + by)z = (az)x + b(yz), which is divisible by x.