MATH 433 Applied Algebra

Lecture 6: Congruences (continued). Modular arithmetic.

Congruences

Let *n* be a positive integer. The integers *a* and *b* are called **congruent modulo** *n* if they have the same remainder when divided by *n*. An equivalent condition is that *n* divides the difference a - b.

Notation. $a \equiv b \mod n$ or $a \equiv b \pmod{n}$.

Proposition If $a \equiv b \mod n$ then for any $c \in \mathbb{Z}$, (i) $a + cn \equiv b \mod n$; (ii) $a + c \equiv b + c \mod n$; (iii) $ac \equiv bc \mod n$.

More properties of congruences

Proposition If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then (i) $a + b \equiv a' + b' \mod n$; (ii) $a - b \equiv a' - b' \mod n$; (iii) $ab \equiv a'b' \mod n$.

Proof: Since $a \equiv a' \mod n$ and $b \equiv b' \mod n$, the number n divides a - a' and b - b', i.e., a - a' = kn and $b - b' = \ell n$, where $k, \ell \in \mathbb{Z}$. Then n also divides

$$\begin{aligned} (a+b)-(a'+b') &= (a-a')+(b-b') = kn + \ell n = (k+\ell)n, \\ (a-b)-(a'-b') &= (a-a')-(b-b') = kn - \ell n = (k-\ell)n, \\ ab-a'b' &= ab-ab'+ab'-a'b' = a(b-b')+(a-a')b' \\ &= a(\ell n) + (kn)b' = (a\ell + kb')n. \end{aligned}$$

Primes in arithmetic progressions

Theorem There are infinitely many prime numbers of the form 4n + 3, $n \in \mathbb{N}$.

Proof: Let p_1, p_2, \ldots, p_k be any finite collection of primes different from 3 and satisfying $p_i \equiv 3 \mod 4$. We need to show that it does not include all primes of that form. Consider the number $N = 4p_1p_2 \dots p_k + 3$. Let $N = q_1q_2 \dots q_m$ be its prime factorisation. By construction, N is odd and not divisible by p_1, p_2, \ldots, p_k and 3. Hence each prime factor q_i is odd and different from p_1, p_2, \ldots, p_k and 3. If we assumed that $q_i \equiv 1 \mod 4$ for $j = 1, 2, \ldots, m$, then it would follow that $N \equiv 1 \mod 4$. However, $N \equiv 3 \mod 4$ by construction. We conclude that $q_i \equiv 3 \mod 4$ for some $j, 1 \le j \le m$.

Theorem (Dirichlet 1837) Suppose *a* and *d* are positive integers such that gcd(a, d) = 1. Then the arithmetic progression $a, a + d, a + 2d, \ldots$ contains infinitely many prime numbers.

Divisibility of decimal integers

Let $\overline{d_k d_{k-1} \dots d_3 d_2 d_1}$ be the decimal notation of a positive integer n ($0 \le d_i \le 9$). Then $n = d_1 + 10d_2 + 10^2d_3 + \dots + 10^{k-2}d_{k-1} + 10^{k-1}d_k.$

Proposition 1 The integer *n* is divisible by 2, 5 or 10 if and only if the last digit d_1 is divisible by the same number.

Proposition 2 The integer *n* is divisible by 4, 20, 25, 50 or 100 if and only if $\overline{d_2d_1}$ is divisible by the same number.

Proposition 3 The integer *n* is divisible by 3 or 9 if and only if the sum of its digits $d_k + \cdots + d_2 + d_1$ is divisible by the same number.

Proposition 4 The integer *n* is divisible by 11 if and only if the alternating sum of its digits $(-1)^{k-1}d_k + \cdots + d_3 - d_2 + d_1$ is divisible by 11. *Hint:* $10^m \equiv 1 \mod 9$, $10^m \equiv 1 \mod 3$, $10^m \equiv (-1)^m \mod 11$. **Problem.** Determine the last digit of 7^{2023} .

The last digit is the remainder after division by 10. We have $7^1\equiv 7\bmod{10}$ and $7^2=49\equiv 9\bmod{10}.$ Then

$$7^3 = 7^2 \cdot 7 \equiv 9 \cdot 7 = 63 \equiv 3 \pmod{10}.$$

Further,

$$7^4 = 7^3 \cdot 7 \equiv 3 \cdot 7 = 21 \equiv 1 \pmod{10}.$$

Now it follows that $7^{n+4} \equiv 7^n \mod 10$ for all $n \ge 1$. Therefore the last digits of the numbers $7^1, 7^2, 7^3, \ldots, 7^n, \ldots$ form a periodic sequence with period 4. Since $2023 \equiv 3 \mod 4$, the last digit of 7^{2023} is the same as the last digit of 7^3 , which is 3.

Congruence classes

Given an integer a, the **congruence class of** a **modulo** n is the set of all integers congruent to a modulo n.

Notation. $[a]_n$ or simply [a]. Also denoted $a + n\mathbb{Z}$ as $[a]_n = \{a + nk : k \in \mathbb{Z}\}.$

Examples. $[0]_2$ is the set of even integers, $[1]_2$ is the set of odd integers, $[2]_4$ is the set of even integers not divisible by 4.

If *n* divides a positive integer *m*, then every congruence class modulo *n* is the union of m/n congruence classes modulo *m*. For example, $[2]_4 = [2]_8 \cup [6]_8$.

The congruence class $[0]_n$ is called the **zero congruence** class. It consists of the integers divisible by n.

The set of all congruence classes modulo n is denoted \mathbb{Z}_n . It consists of n elements $[0]_n, [1]_n, [2]_n, \ldots, [n-1]_n$.

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_n for some $n \ge 1$. The arithmetic operations on \mathbb{Z}_n are defined as follows. For any integers *a* and *b*, we let

$$[a]_n + [b]_n = [a + b]_n, [a]_n - [b]_n = [a - b]_n, [a]_n \times [b]_n = [ab]_n.$$

Theorem The arithmetic operations on \mathbb{Z}_n are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.

Proof: Let a' be another representative of $[a]_n$ and b' be another representative of $[b]_n$. Then $a' \equiv a \mod n$ and $b' \equiv b \mod n$. According to a previously proved proposition, this implies $a' + b' \equiv a + b \mod n$, $a' - b' \equiv a - b \mod n$ and $a'b' \equiv ab \mod n$. In other words, $[a' + b']_n = [a + b]_n$, $[a' - b']_n = [a - b]_n$ and $[a'b']_n = [ab]_n$.