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Lecture 10:

Order of a congruence class.
Fermat’s Little Theorem.



Powers of a congruence class

Let [a] ∈ Zn be a congruence class modulo n. The
powers [a]k , k = 1, 2, . . . are defined inductively:

[a]1 = [a] and [a]k = [a]k−1[a] for k > 1. It easily
follows by induction that [a]k = [ak ] for all k ≥ 1.

Theorem 1 [a]k+m = [a]k [a]m and [a]km = ([a]k)m

for all k ,m ≥ 1.

In the case when [a] is invertible, we also let
[a]0 = [1] and [a]−k = ([a]−1)k for each k ≥ 1.

Theorem 2 If [a] is invertible, then

[a]k+m = [a]k [a]m and [a]km = ([a]k)m for all
k ,m ∈ Z.



Finite multiplicative order

A congruence class [a]n is said to have finite (multiplicative)
order if [a]kn = [1]n for some positive integer k. The smallest
k with this property is called the order of [a]n. We also say
that k is the order of a modulo n.

Theorem A congruence class [a]n has finite order if and only
if it is invertible (i.e., a is coprime with n).

Proof: If [a]n has finite order k, then [1]n = [a]kn = [a]n[a]
k−1
n ,

which implies that [a]−1
n = [a]k−1

n .

Conversely, suppose that [a]n is invertible. Since the set Zn is
finite, the sequence [a]n, [a]

2
n, [a]

3
n, . . . contains repetitions.

Hence for some integers r and s, 0 < r < s, we will have

[a]sn = [a]rn =⇒ [a]sn[a]
−r
n = [a]rn[a]

−r
n =⇒ [a]s−r

n = [1]n.



Proposition 1 Let k be the order of an integer a modulo n.
Then as ≡ 1 mod n if and only if s is a multiple of k.

Proof: If s = kℓ, where ℓ ∈ N, then

[as ]n = [a]sn = ([a]kn)
ℓ = [1]ℓn = [1]n.

Conversely, let [a]sn = [1]n. We have s = kq + r , where q is
the quotient and r is the remainder of s by k. Then

[a]r = [a]s−kq = [a]s([a]k)−q = [1]([1])−q = [1].

Since 0 ≤ r < k, it follows that r = 0.

Proposition 2 Let k be the order of an integer a modulo n.
Then as ≡ at mod n if and only if s ≡ t mod k.

Proof: If s ≡ t mod k, then s − t = ℓk, ℓ ∈ Z. It follows
that [as ] = [a]s = [a]t+ℓk = [a]t([a]k)ℓ = [a]t [1]ℓ = [a]t = [at ].

Conversely, if [as ] = [at ], then

[a]s−t = [a]s [a]−t = [a]s([a]t)−1 = [as ][at ]−1 = [1].

By Proposition 1, s − t is a multiple of k.



Examples. • G7 = {[1], [2], [3], [4], [5], [6]}.

[1]1 = [1],

[2]2 = [4], [2]3 = [8] = [1],

[3]2 = [9] = [2], [3]3 = [2][3] = [6], [3]4 = [2]2 = [4],
[3]5 = [4][3] = [5], [3]6 = [3][5] = [1].

[4]2 = [16] = [2], [4]3 = [4][2] = [1].

[5]2 = [25] = [4], [5]3 = [4][5] = [−1], [5]4 = [−1][5] = [2],
[5]5 = [2][5] = [3], [5]6 = [3][5] = [1].

[6]2 = [−1]2 = [1].

Thus [1] has order 1, [6] has order 2, [2] and [4] have order 3,
and [3] and [5] have order 6.

• G12 = {[1], [5], [7], [11]}.

[1]1 = [1], [5]2 = [25] = [1], [7]2 = [−5]2 = [25] = [1],

[11]2 = [−1]2 = [1].

Thus [1] has order 1 while [5], [7], and [11] have order 2.



Fermat’s Little Theorem Let p be a prime number. Then
ap−1 ≡ 1 mod p for every integer a not divisible by p.

Proof: Consider two lists of congruence classes modulo p:

[1], [2], . . . , [p − 1] and [a][1], [a][2], . . . , [a][p − 1].

The first one is the list of all elements of Gp. Since a is not a
multiple of p, it’s class [a] is in Gp as well. It follows that all
elements in the second list are from Gp. Also, all elements in
the second list are distinct as

[a][n] = [a][m] =⇒ [a]−1[a][n] = [a]−1[a][m] =⇒ [n] = [m].

It follows that the second list consists of the same elements as
the first (arranged in a different way). Therefore

[a][1] · [a][2] · · · [a][p − 1] = [1] · [2] · · · [p − 1].

Hence [a]p−1X = X , where X = [1] · [2] · · · [p − 1].
Note that X ∈ Gp since Gp is closed under multiplication.
That is, X is invertible. Then [a]p−1XX−1 = XX−1

=⇒ [a]p−1[1] = [1] =⇒ [ap−1] = [1].



Corollary 1 Let p be a prime number. Then ap ≡ a mod p

for every integer a (that is, ap − a is a multiple of p).

Corollary 2 Let a be an integer not divisible by a prime
number p. Then the order of a modulo p is a divisor of p− 1.

Proof: By Fermat’s Little Theorem, ap−1 ≡ 1 mod p.
According to a previously proved proposition, the order of a
modulo p divides any positive integer s such that
as ≡ 1 mod p.

Problem. Find the remainder of 1250 after division by 17.

Since 17 is prime and 12 is not a multiple of 17, we have
[12]1617 = [1]17. Then [1250] = [12]50 = [12]3·16+2

= ([12]16)3 · [12]2 = [12]2 = [−5]2 = [25] = [8]. Hence the
remainder is 8.


