MATH 433 Applied Algebra

Lecture 11: Euler's Theorem. Euler's phi-function.

Order of a congruence class

A congruence class $[a]_n$ has **finite order** if $[a]_n^k = [1]_n$ for some integer $k \ge 1$. The smallest k with this property is called the **order of** $[a]_n$. We also say that k is the **order of** a **modulo** n.

Theorem A congruence class $[a]_n$ has finite order if and only if it is invertible, i.e., if gcd(a, n) = 1.

Proposition 1 Let k be the order of an integer a modulo n. Then $a^s \equiv 1 \mod n$ if and only if s is a multiple of k.

Proposition 2 Let k be the order of an integer a modulo n. Then $a^s \equiv a^t \mod n$ if and only if $s \equiv t \mod k$.

Fermat's Little Theorem Let p be a prime number. Then $a^{p-1} \equiv 1 \mod p$ for every integer a not divisible by p.

Proof: Consider two lists of congruence classes modulo p: [1], [2], ..., [p - 1] and [a][1], [a][2], ..., [a][p - 1].

The first one is the list of all elements of G_p . Since *a* is not a multiple of *p*, it's class [*a*] is in G_p as well. It follows that all elements in the second list are from G_p . Also, all elements in the second list are distinct as

 $[a][n] = [a][m] \implies [a]^{-1}[a][n] = [a]^{-1}[a][m] \implies [n] = [m].$ It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

$$[a][1] \cdot [a][2] \cdots [a][p-1] = [1] \cdot [2] \cdots [p-1].$$

Hence $[a]^{p-1}X = X$, where $X = [1] \cdot [2] \cdots [p-1]$. Note that $X \in G_p$ since G_p is closed under multiplication. That is, X is invertible. Then $[a]^{p-1}XX^{-1} = XX^{-1}$ $\implies [a]^{p-1}[1] = [1] \implies [a^{p-1}] = [1]$. **Corollary 1** Let p be a prime number. Then $a^p \equiv a \mod p$ for every integer a (that is, $a^p - a$ is a multiple of p).

Corollary 2 Let *a* be an integer not divisible by a prime number *p*. Then the order of *a* modulo *p* is a divisor of p-1.

Proof: By Fermat's Little Theorem, $a^{p-1} \equiv 1 \mod p$. According to a previously proved proposition, the order of a modulo p divides any positive integer s such that $a^s \equiv 1 \mod p$.

Problem. Find the remainder of 12^{50} after division by 17.

Since 17 is prime and 12 is not a multiple of 17, we have $[12]_{17}^{16} = [1]_{17}$. Then $[12^{50}] = [12]^{50} = [12]^{3 \cdot 16 + 2}$ = $([12]^{16})^3 \cdot [12]^2 = [12]^2 = [-5]^2 = [25] = [8]$. Hence the remainder is 8.

Euler's Theorem

 \mathbb{Z}_n : the set of all congruence classes modulo *n*. *G_n*: the set of all invertible congruence classes modulo *n*.

Theorem (Euler) Let $n \ge 2$ and $\phi(n)$ be the number of elements in G_n . Then $a^{\phi(n)} \equiv 1 \mod n$

for every integer a coprime with n.

Corollary Let *a* be an integer coprime with an integer $n \ge 2$. Then the order of *a* modulo *n* is a divisor of $\phi(n)$.

Proof of Euler's Theorem

Proof: Let $[b_1], [b_2], \ldots, [b_m]$ be the list of all elements of G_n . Note that $m = \phi(n)$. Consider another list:

 $[a][b_1], [a][b_2], \ldots, [a][b_m].$

Since gcd(a, n) = 1, the congruence class $[a]_n$ is in G_n as well. Hence the second list also consists of elements from G_n . Also, all elements in the second list are distinct as

 $[a][b] = [a][b'] \implies [a]^{-1}[a][b] = [a]^{-1}[a][b'] \implies [b] = [b'].$ It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

 $[a][b_1] \cdot [a][b_2] \cdots [a][b_m] = [b_1] \cdot [b_2] \cdots [b_m].$ Hence $[a]^m X = X$, where $X = [b_1] \cdot [b_2] \cdots [b_m].$ Note that $X \in G_n$ since G_n is closed under multiplication. That is, X is invertible. Then $[a]^m X X^{-1} = X X^{-1}$ $\implies [a]^m [1] = [1] \implies [a^m] = [1].$ Recall that $m = \phi(n).$

Euler's phi function

The number of elements in G_n , the set of invertible congruence classes modulo n, is denoted $\phi(n)$. In other words, $\phi(n)$ counts how many of the numbers 1, 2, ..., n are coprime with n. $\phi(n)$ is called **Euler's** ϕ -function or **Euler's totient function**.

Problem. Compute $\phi(100)$.

Since $100 = 2^2 \cdot 5^2$, an integer k is coprime with 100 if and only if it is not divisible by 2 or 5. Among integers from 1 to 100, there are 50 = 100/2 even numbers and 20 = 100/5numbers divisible by 5. Note that some of them are divisible by both 2 and 5. These are exactly numbers divisible by 10. There are 10 = 100/10 such numbers. We conclude that $\phi(100) = 100 - 50 - 20 + 10 = 40$.

Euler's phi function

The number of elements in G_n , the set of invertible congruence classes modulo n, is denoted $\phi(n)$. In other words, $\phi(n)$ counts how many of the numbers $1, 2, \ldots, n$ are coprime with n. $\phi(n)$ is called **Euler's** ϕ -function or **Euler's** totient function.

Proposition 1 If p is prime, then $\phi(p^s) = p^s - p^{s-1}$.

Proposition 2 If gcd(m, n) = 1, then $\phi(mn) = \phi(m) \phi(n)$.

Theorem Let $n = p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}$, where p_1, p_2, \dots, p_k are distinct primes and s_1, \dots, s_k are positive integers. Then

$$\phi(n) = p_1^{s_1-1}(p_1-1)p_2^{s_2-1}(p_2-1)\dots p_k^{s_k-1}(p_k-1).$$

Sketch of the proof: The proof is by induction on k. The base of induction is Proposition 1. The induction step relies on Proposition 2.

Proposition If gcd(m, n) = 1, then $\phi(mn) = \phi(m) \phi(n)$.

Proof: Let $\mathbb{Z}_m \times \mathbb{Z}_n$ denote the set of all pairs (X, Y) such that $X \in \mathbb{Z}_m$ and $Y \in \mathbb{Z}_n$. We define a function $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ by the formula $f([a]_{mn}) = ([a]_m, [a]_n)$. Since m and n divide mn, this function is well defined (does not depend on the choice of the representative a). Since gcd(m, n) = 1, the Chinese Remainder Theorem implies that this function establishes a one-to-one correspondence between the sets \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$.

Furthermore, an integer *a* is coprime with *mn* if and only if it is coprime with *m* and with *n*. Therefore the function *f* also establishes a one-to-one correspondence between G_{mn} and $G_m \times G_n$, the latter being the set of pairs (X, Y) such that $X \in G_m$ and $Y \in G_n$. In other words, $f(G_{mn}) = G_m \times G_n$. It follows that the sets G_{mn} and $G_m \times G_n$ consist of the same number of elements. Thus $\phi(mn) = \phi(m) \phi(n)$.

Examples.
$$\phi(11) = 10,$$

 $\phi(25) = \phi(5^2) = 5 \cdot 4 = 20,$
 $\phi(27) = \phi(3^3) = 3^2 \cdot 2 = 18,$
 $\phi(100) = \phi(2^2 \cdot 5^2) = \phi(2^2) \phi(5^2) = 2 \cdot 20 = 40,$
 $\phi(1001) = \phi(7 \cdot 11 \cdot 13) = (7 - 1)(11 - 1)(13 - 1) = 720,$
 $\phi(2023) = \phi(7 \cdot 17^2) = (7 - 1)(17^2 - 17) = 1632.$

Problem. Determine the last two digits of 3^{2023} .

The last two digits form the remainder under division by 100. Since $\phi(100) = 40$, we have

 $3^{40}\equiv 1 \ {\rm mod} \ 100.$

Then $[3^{2023}] = [3]^{2023} = [3]^{40 \cdot 50 + 23} = ([3]^{40})^{50} [3]^{23} = [3]^{23}$ = $([3]^5)^4 [3]^3 = [243]^4 [3]^3 = [43]^4 [3]^3 = [(50 - 7)^2]^2 [3]^3$ = $[7^2]^2 [3]^3 = [49]^2 [3]^3 = [(50 - 1)^2] [3]^3 = [1^2] [3]^3 = [27].$ Thus $3^{2023} = \dots 27.$