MATH 433
Applied Algebra
Lecture 12:
Review for Exam 1.

Topics for Exam 1

- Mathematical induction, strong induction
- Greatest common divisor, Euclidean algorithm
- Primes, factorisation, Unique Factorisation Theorem
- Congruence classes, modular arithmetic
- Inverse of a congruence class
- Linear congruences
- Chinese Remainder Theorem
- Order of a congruence class
- Fermat's Little Theorem, Euler's Theorem
- Euler's phi-function

Sample problems

Problem 1. Find $\operatorname{gcd}(1106,350)$.
Problem 2. Find an integer solution of the equation $45 x+115 y=10$.
Problem 3. Prove by induction that

$$
\frac{1}{4}+\frac{1}{16}+\cdots+\frac{1}{4^{n}}=\frac{1}{3}\left(1-\frac{1}{4^{n}}\right)
$$

for every positive integer n.
Problem 4. When the number $25^{7} \cdot 20^{20} \cdot 18^{12}$ is written out, how many zeroes are there at the right-hand end?

Problem 5. Is the number 163 prime? Explain how you know.

Problem 6. Find a multiplicative inverse of 29 modulo 41.

Sample problems

Problem 7. Which congruence classes modulo 8 are invertible?

Problem 8. Find all integers x such that $21 x \equiv 5 \bmod 31$.
Problem 9. Solve the system $\left\{\begin{array}{l}y \equiv 4 \bmod 7, \\ y \equiv 5 \bmod 11 .\end{array}\right.$
Problem 10. How many integers from 1 to 120 are relatively prime with 120 ?

Problem 11. Find the multiplicative order of 7 modulo 36 .
Problem 12. Determine the last two digits of 303^{303}.

Problem 1. Find $\operatorname{gcd}(1106,350)$.

To find the greatest common divisor of 1106 and 350 , we apply the Euclidean algorithm to these numbers.
First we divide 1106 by 350 : $1106=350 \cdot 3+56$,
next we divide 350 by 56 : $350=56 \cdot 6+14$,
next we divide 56 by 14: $56=14 \cdot 4$.
It follows that $\operatorname{gcd}(1106,350)=\operatorname{gcd}(350,56)=\operatorname{gcd}(56,14)=14$.
Alternatively, we could use the Euclidean algorithm in matrix form:
$\left(\begin{array}{ll|l}1 & 0 & 1106 \\ 0 & 1 & 350\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & -3 & 56 \\ 0 & 1 & 350\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & -3 & 56 \\ -6 & 19 & 14\end{array}\right)$
$\rightarrow\left(\begin{array}{rr|r}25 & -79 & 0 \\ -6 & 19 & 14\end{array}\right)$.
Now $\operatorname{gcd}(1106,350)$ is the nonzero entry in the rightmost column of the last matrix, which is 14 .

Problem 2. Find an integer solution of the equation $45 x+115 y=10$.

First we use the Euclidean algorithm to find $\operatorname{gcd}(45,115)$ and represent it as an integral linear combination of 45 and 115:
$\left(\begin{array}{ll|l}1 & 0 & 45 \\ 0 & 1 & 115\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & 0 & 45 \\ -2 & 1 & 25\end{array}\right) \rightarrow\left(\begin{array}{rr|r}3 & -1 & 20 \\ -2 & 1 & 25\end{array}\right)$
$\rightarrow\left(\begin{array}{rr|r}3 & -1 & 20 \\ -5 & 2 & 5\end{array}\right) \rightarrow\left(\begin{array}{rr|r}23 & -9 & 0 \\ -5 & 2 & 5\end{array}\right)$.
It follows that $\operatorname{gcd}(45,115)=5$. Also, from the second row of the last matrix we read off that $(-5) \cdot 45+2 \cdot 115=5$.
Multiplying both sides by 2 , we get that $x=-10, y=4$ is a solution.

Problem 2'. Find all integer solutions of the equation $45 x+115 y=10$.

For any integer solution of the equation, the number x is a solution of the linear congruence $45 x \equiv 10 \bmod 115$.

$$
45 x \equiv 10 \bmod 115 \Longleftrightarrow 9 x \equiv 2 \bmod 23
$$

From the previous solution we get that $(-5) \cdot 45+2 \cdot 115=5$. Then $(-5) \cdot 9+2 \cdot 23=1$.
It follows that $[-5]_{23}=[9]_{23}^{-1}$. Hence

$$
[x]_{23}=[9]_{23}^{-1}[2]_{23}=[-5]_{23}[2]_{23}=[-10]_{23} .
$$

That is, $x=-10+23 k$ for some $k \in \mathbb{Z}$.
Then $y=(10-45 x) / 115=(10-45(-10+23 k)) / 115$
$=4-9 k$ for the same k.

Problem 3. Prove by induction that

$$
\frac{1}{4}+\frac{1}{16}+\cdots+\frac{1}{4^{n}}=\frac{1}{3}\left(1-\frac{1}{4^{n}}\right)
$$

for every positive integer n.
The proof is by induction on n. First consider the case $n=1$. In this case the formula reduces to $\frac{1}{4}=\frac{1}{3}\left(1-\frac{1}{4}\right)$, which is a true equality.
Now assume that the formula holds for $n=k$, that is,

$$
\frac{1}{4}+\frac{1}{16}+\cdots+\frac{1}{4^{k}}=\frac{1}{3}\left(1-\frac{1}{4^{k}}\right) .
$$

Then $\frac{1}{4}+\frac{1}{16}+\cdots+\frac{1}{4^{k}}+\frac{1}{4^{k+1}}=\frac{1}{3}\left(1-\frac{1}{4^{k}}\right)+\frac{1}{4^{k+1}}$
$=\frac{1}{3}-\frac{1}{3} \cdot \frac{1}{4^{k}}+\frac{1}{4} \cdot \frac{1}{4^{k}}=\frac{1}{3}-\frac{1}{12} \cdot \frac{1}{4^{k}}=\frac{1}{3}\left(1-\frac{1}{4^{k+1}}\right)$,
which means that the formula holds for $n=k+1$ as well.
By induction, the formula holds for every positive integer n.

Problem 4. When the number $25^{7} \cdot 20^{20} \cdot 18^{12}$ is written out, how many zeroes are there at the right-hand end?

The number of consecutive zeroes at the right-hand end is the exponent of the largest power of 10 that divides our number.
The prime factorisation of the given number is $25^{7} \cdot 20^{20} \cdot 18^{12}=\left(5^{2}\right)^{7} \cdot\left(2^{2} \cdot 5\right)^{20} \cdot\left(2 \cdot 3^{2}\right)^{12}=2^{52} \cdot 3^{24} \cdot 5^{34}$.
For any integer $n>0$ the prime factorisation of 10^{n} is $2^{n} \cdot 5^{n}$.
As follows from the Unique Factorisation Theorem, a positive integer A divides another positive integer B if and only if the prime factorisation of A is part of the prime factorisation of B.
Hence 10^{n} divides the given number if $n \leq 52$ and $n \leq 34$. The largest number with this property is 34 . Thus there are 34 zeroes at the right-hand end.

Problem 5. Is the number 163 prime? Explain how you know.

Suppose N is a composite positive integer. Then $N=a b$, where $1<a, b<N$. We can assume without loss of generality that $a \leq b$. Then $N=a b \geq a^{2}$ so that $a \leq \sqrt{N}$. Hence N has a divisor in the range from 2 to \sqrt{N}. In particular, the smallest prime divisor of N does not exceed \sqrt{N}.
To show that 163 is prime, it is enough to check that it is not divisible by prime numbers in the range between 1 and $\sqrt{163}$. Note that $12^{2}=144<163<169=13^{2}$, hence $12<\sqrt{163}<13$. Therefore the prime numbers to check are $2,3,5,7$ and 11 . Neither of them divides 163 .

Problem 6. Find a multiplicative inverse of 29 modulo 41.
To find the inverse, we need to represent 1 as an integral linear combination of 29 and 41 . Let us apply the Euclidean algorithm (in matrix form) to 29 and 41:
$\left(\begin{array}{ll|l}1 & 0 & 29 \\ 0 & 1 & 41\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & 0 & 29 \\ -1 & 1 & 12\end{array}\right) \rightarrow\left(\begin{array}{rr|r}3 & -2 & 5 \\ -1 & 1 & 12\end{array}\right)$
$\rightarrow\left(\begin{array}{rr|r}3 & -2 & 5 \\ -7 & 5 & 2\end{array}\right) \rightarrow\left(\begin{array}{rr|r}17 & -12 & 1 \\ -7 & 5 & 2\end{array}\right)$.
From the first row of the last matrix we read off that $17 \cdot 29-12 \cdot 41=1$. Hence $17 \cdot 29 \equiv 1 \bmod 41$.
It follows that $[17]_{41}[29]_{41}=[1]_{41}$, which means that $[29]_{41}^{-1}=[17]_{41}$. Thus 17 is the inverse of 29 modulo 41 .

Problem 7. Which congruence classes modulo 8 are invertible?

A congruence class $[a]_{n}$ is invertible if and only if a is coprime with n.

There are 8 congruence classes modulo 8:

$$
[0],[1],[2],[3],[4],[5],[6],[7] .
$$

The congruence classes of even numbers are not invertible. The classes of odd numbers are invertible.

$$
[1]^{-1}=[1], \quad[3]^{-1}=[3], \quad[5]^{-1}=[5], \quad[7]^{-1}=[7] .
$$

Every invertible class is its own inverse.

Problem 8. Find all integers x such that $21 x \equiv 5 \bmod 31$.
To solve this linear congruence, we need to find the inverse of 21 modulo 31. For this, we need to represent 1 as an integral linear combination of 21 and 31 . This can be done either by inspection or by the matrix method:

$$
\left(\begin{array}{ll|l}
1 & 0 & 21 \\
0 & 1 & 31
\end{array}\right) \rightarrow\left(\begin{array}{rr|r}
1 & 0 & 21 \\
-1 & 1 & 10
\end{array}\right) \rightarrow\left(\begin{array}{rr|c}
3 & -2 & 1 \\
-1 & 1 & 10
\end{array}\right) .
$$

From the first row we read off that $3 \cdot 21-2 \cdot 31=1$, which implies that 3 is the inverse of 21 modulo 31 .

$$
\begin{aligned}
& \text { Thus } 21 x \equiv 5 \bmod 31 \Longleftrightarrow x \equiv 3 \cdot 5 \bmod 31 \\
& \Longleftrightarrow x \equiv 15 \bmod 31 .
\end{aligned}
$$

In alternative notation (with congruence classes modulo 31),

$$
[21][x]=[5] \Longleftrightarrow[x]=[21]^{-1}[5]=[3][5]=[15] .
$$

Problem 9. Solve the system $\left\{\begin{array}{l}y \equiv 4 \bmod 7, \\ y \equiv 5 \bmod 11 .\end{array}\right.$
The moduli 7 and 11 are coprime. First we use the Euclidean algorithm to represent 1 as an integral linear combination of 7 and 11 :
$\left(\begin{array}{ll|l}1 & 0 & 7 \\ 0 & 1 & 11\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & 0 & 7 \\ -1 & 1 & 4\end{array}\right) \rightarrow\left(\begin{array}{rr|r}2 & -1 & 3 \\ -1 & 1 & 4\end{array}\right)$
$\rightarrow\left(\begin{array}{rr|r}2 & -1 & 3 \\ -3 & 2 & 1\end{array}\right)$.
Hence $(-3) \cdot 7+2 \cdot 11=1$. Then one of the solutions is
$y=5(-3) \cdot 7+4 \cdot 2 \cdot 11=-17$.
The general solution is $y \equiv-17 \bmod 77$.

Problem 9. Solve the system $\left\{\begin{array}{l}y \equiv 4 \bmod 7, \\ y \equiv 5 \bmod 11 .\end{array}\right.$
Alternative solution: From the second congruence we find that $y=5+11 k$, where k is an integer. Substituting this into the first congruence, we obtain

$$
\begin{aligned}
& 5+11 k \equiv 4 \bmod 7 \Longleftrightarrow 11 k \equiv-1 \bmod 7 \\
& \Longleftrightarrow 4 k \equiv-1 \bmod 7 .
\end{aligned}
$$

Multiplying both sides of the last congruence by 2 (which is the inverse of 4 modulo 7), we get

$$
8 k \equiv-2 \bmod 7 \Longleftrightarrow k \equiv-2 \bmod 7
$$

Thus $k=-2+7 s$, where s is an integer. Then $y=5+11 k=5+11(-2+7 s)=-17+77 s$.

Problem 10. How many integers from 1 to 120 are relatively prime with 120 ?

The number of integers from 1 to n that are relatively prime with n is given by Euler's phi-function $\phi(n)$.

To find $\phi(120)$, we expand 120 into a product of primes:

$$
120=10 \cdot 12=2 \cdot 5 \cdot 4 \cdot 3=2^{3} \cdot 3 \cdot 5 .
$$

Then

$$
\phi(120)=\phi\left(2^{3}\right) \phi(3) \phi(5)=\left(2^{3}-2^{2}\right)(3-1)(5-1)=32 .
$$

Problem 11. Find the multiplicative order of 7 modulo 36 .
The multiplicative order of 7 modulo 36 is the smallest positive integer n such that $7^{n} \equiv 1 \bmod 36$ (it is well defined since 7 is coprime with 36). As follows from Euler's Theorem, the order divides

$$
\phi(36)=\phi\left(2^{2} \cdot 3^{2}\right)=\phi\left(2^{2}\right) \phi\left(3^{2}\right)=\left(2^{2}-2\right)\left(3^{2}-3\right)=12 .
$$

To find the order, we compute consecutive powers of the congruence class of 7 modulo 36 : $[7]^{2}=[49]=[13]$,
$[7]^{3}=[7]^{2}[7]=[13][7]=[91]=[19]$,
$[7]^{4}=\left([7]^{2}\right)^{2}=[13]^{2}=[169]=[25]=[-11]$.
By now, we know that the order is greater than 4. Therefore it is either 6 or 12 . Hence it remains to compute $[7]^{6}$.
$[7]^{6}=[7]^{4}[7]^{2}=[-11][13]=[-143]=[1]$.
Thus the order of 7 modulo 36 is 6 .

Problem 12. Determine the last two digits of 303^{303}.
The last two digits form the remainder after division by 100 . Since $\phi(100)=\phi\left(2^{2} \cdot 5^{2}\right)=\left(2^{2}-2\right)\left(5^{2}-5\right)=40$, we have $3^{40} \equiv 1 \bmod 100$ due to Euler's Theorem. Then
$\left[303^{303}\right]=[303]^{303}=[3]^{303}=[3]^{40 \cdot 7+23}=\left([3]^{40}\right)^{7}[3]^{23}=[3]^{23}$.
To simplify computation, we use the Chinese Remainder
Theorem, which says that a congruence class $[a]_{100}$ is uniquely determined by the congruence classes $[a]_{4}$ and $[a]_{25}$.
Since $\phi(4)=\phi\left(2^{2}\right)=2$ and $\phi(25)=\phi\left(5^{2}\right)=20$, it follows from Euler's Theorem that $3^{2} \equiv 1 \bmod 4$ and $3^{20} \equiv 1 \bmod 25$.
Then $[3]_{4}^{23}=[3]_{4}$ and $[3]_{25}^{23}=[3]_{25}^{3}=\left[3^{3}\right]_{25}=[2]_{25}$.
Since $303^{303} \equiv 3^{3} \equiv 2 \bmod 25$, the remainder of 303^{303} after division by 100 is among the four numbers $2,27=2+25$, $52=2+25 \cdot 2$, and $77=2+25 \cdot 3$. We pick the one that leaves remainder 3 after division by 4 . That's 27 .

