
MATH 433

Applied Algebra

Lecture 12:

Review for Exam 1.



Topics for Exam 1

• Mathematical induction, strong induction

• Greatest common divisor, Euclidean algorithm

• Primes, factorisation, Unique Factorisation Theorem

• Congruence classes, modular arithmetic

• Inverse of a congruence class

• Linear congruences

• Chinese Remainder Theorem

• Order of a congruence class

• Fermat’s Little Theorem, Euler’s Theorem

• Euler’s phi-function



Sample problems

Problem 1. Find gcd(1106, 350).

Problem 2. Find an integer solution of the equation
45x + 115y = 10.

Problem 3. Prove by induction that
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for every positive integer n.

Problem 4. When the number 257 · 2020 · 1812 is written
out, how many zeroes are there at the right-hand end?

Problem 5. Is the number 163 prime? Explain how you
know.

Problem 6. Find a multiplicative inverse of 29 modulo 41.



Sample problems

Problem 7. Which congruence classes modulo 8 are
invertible?

Problem 8. Find all integers x such that 21x ≡ 5 mod 31.

Problem 9. Solve the system

{

y ≡ 4 mod 7,
y ≡ 5 mod 11.

Problem 10. How many integers from 1 to 120 are
relatively prime with 120?

Problem 11. Find the multiplicative order of 7 modulo 36.

Problem 12. Determine the last two digits of 303303.



Problem 1. Find gcd(1106, 350).

To find the greatest common divisor of 1106 and 350, we
apply the Euclidean algorithm to these numbers.

First we divide 1106 by 350: 1106 = 350 · 3 + 56,
next we divide 350 by 56: 350 = 56 · 6 + 14,
next we divide 56 by 14: 56 = 14 · 4.
It follows that gcd(1106, 350)=gcd(350, 56)=gcd(56, 14)=14.

Alternatively, we could use the Euclidean algorithm in matrix
form:
(

1 0 1106
0 1 350

)

→
(

1 −3 56
0 1 350

)

→
(

1 −3 56
−6 19 14

)

→
(

25 −79 0
−6 19 14

)

.

Now gcd(1106, 350) is the nonzero entry in the rightmost
column of the last matrix, which is 14.



Problem 2. Find an integer solution of the equation
45x + 115y = 10.

First we use the Euclidean algorithm to find gcd(45, 115) and
represent it as an integral linear combination of 45 and 115:
(

1 0 45
0 1 115

)

→
(

1 0 45
−2 1 25

)

→
(

3 −1 20
−2 1 25

)

→
(

3 −1 20
−5 2 5

)

→
(

23 −9 0
−5 2 5

)

.

It follows that gcd(45, 115) = 5. Also, from the second row
of the last matrix we read off that (−5) · 45 + 2 · 115 = 5.

Multiplying both sides by 2, we get that x = −10, y = 4 is a
solution.



Problem 2′. Find all integer solutions of the equation
45x + 115y = 10.

For any integer solution of the equation, the number x is a
solution of the linear congruence 45x ≡ 10 mod 115.

45x ≡ 10 mod 115 ⇐⇒ 9x ≡ 2 mod 23

From the previous solution we get that
(−5) · 45 + 2 · 115 = 5. Then (−5) · 9 + 2 · 23 = 1.
It follows that [−5]23 = [9]−1

23
. Hence

[x ]23 = [9]−1

23 [2]23 = [−5]23[2]23 = [−10]23.

That is, x = −10 + 23k for some k ∈ Z.

Then y = (10− 45x)/115 = (10− 45(−10 + 23k))/115
= 4− 9k for the same k.



Problem 3. Prove by induction that

1

4
+

1

16
+ · · ·+

1

4n
=

1

3

(

1−
1

4n

)

for every positive integer n.

The proof is by induction on n. First consider the case n = 1.
In this case the formula reduces to 1

4
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)

, which is a
true equality.

Now assume that the formula holds for n = k, that is,
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,

which means that the formula holds for n = k + 1 as well.

By induction, the formula holds for every positive integer n.



Problem 4. When the number 257 · 2020 · 1812 is written
out, how many zeroes are there at the right-hand end?

The number of consecutive zeroes at the right-hand end is the
exponent of the largest power of 10 that divides our number.

The prime factorisation of the given number is

257 · 2020 · 1812 = (52)7 · (22 · 5)20 · (2 · 32)12 = 252 · 324 · 534.

For any integer n > 0 the prime factorisation of 10n is 2n·5n.

As follows from the Unique Factorisation Theorem, a positive
integer A divides another positive integer B if and only if the
prime factorisation of A is part of the prime factorisation of B .

Hence 10n divides the given number if n ≤ 52 and n ≤ 34.
The largest number with this property is 34. Thus there are
34 zeroes at the right-hand end.



Problem 5. Is the number 163 prime? Explain how you
know.

Suppose N is a composite positive integer. Then N = ab,
where 1 < a, b < N. We can assume without loss of
generality that a ≤ b. Then N = ab ≥ a2 so that a ≤

√
N .

Hence N has a divisor in the range from 2 to
√
N. In

particular, the smallest prime divisor of N does not exceed√
N .

To show that 163 is prime, it is enough to check that it is not
divisible by prime numbers in the range between 1 and

√
163.

Note that 122 = 144 < 163 < 169 = 132, hence
12 <

√
163 < 13. Therefore the prime numbers to check are

2, 3, 5, 7 and 11. Neither of them divides 163.



Problem 6. Find a multiplicative inverse of 29 modulo 41.

To find the inverse, we need to represent 1 as an integral
linear combination of 29 and 41. Let us apply the Euclidean
algorithm (in matrix form) to 29 and 41:
(

1 0 29
0 1 41

)

→
(

1 0 29
−1 1 12

)

→
(

3 −2 5
−1 1 12

)

→
(

3 −2 5
−7 5 2

)

→
(

17 −12 1
−7 5 2

)

.

From the first row of the last matrix we read off that
17 · 29− 12 · 41 = 1. Hence 17 · 29 ≡ 1 mod 41.

It follows that [17]41[29]41 = [1]41, which means that
[29]−1

41 = [17]41. Thus 17 is the inverse of 29 modulo 41.



Problem 7. Which congruence classes modulo 8 are
invertible?

A congruence class [a]n is invertible if and only if a is coprime
with n.

There are 8 congruence classes modulo 8:

[0], [1], [2], [3], [4], [5], [6], [7].

The congruence classes of even numbers are not invertible.
The classes of odd numbers are invertible.

[1]−1 = [1], [3]−1 = [3], [5]−1 = [5], [7]−1 = [7].

Every invertible class is its own inverse.



Problem 8. Find all integers x such that 21x ≡ 5 mod 31.

To solve this linear congruence, we need to find the inverse of
21 modulo 31. For this, we need to represent 1 as an integral
linear combination of 21 and 31. This can be done either by
inspection or by the matrix method:
(

1 0 21
0 1 31

)

→
(

1 0 21
−1 1 10

)

→
(

3 −2 1
−1 1 10

)

.

From the first row we read off that 3 · 21− 2 · 31 = 1, which
implies that 3 is the inverse of 21 modulo 31.

Thus 21x ≡ 5 mod 31 ⇐⇒ x ≡ 3 · 5 mod 31
⇐⇒ x ≡ 15 mod 31.

In alternative notation (with congruence classes modulo 31),

[21][x ] = [5] ⇐⇒ [x ] = [21]−1[5] = [3][5] = [15].



Problem 9. Solve the system

{

y ≡ 4 mod 7,
y ≡ 5 mod 11.

The moduli 7 and 11 are coprime. First we use the Euclidean
algorithm to represent 1 as an integral linear combination of 7
and 11:
(

1 0 7
0 1 11

)

→
(

1 0 7
−1 1 4

)

→
(

2 −1 3
−1 1 4

)

→
(

2 −1 3
−3 2 1

)

.

Hence (−3) · 7 + 2 · 11 = 1. Then one of the solutions is
y = 5(−3) · 7 + 4 · 2 · 11 = −17.

The general solution is y ≡ −17 mod 77.



Problem 9. Solve the system

{

y ≡ 4 mod 7,
y ≡ 5 mod 11.

Alternative solution: From the second congruence we find
that y = 5 + 11k, where k is an integer. Substituting this
into the first congruence, we obtain

5 + 11k ≡ 4 mod 7 ⇐⇒ 11k ≡ −1 mod 7
⇐⇒ 4k ≡ −1 mod 7.

Multiplying both sides of the last congruence by 2 (which is
the inverse of 4 modulo 7), we get

8k ≡ −2 mod 7 ⇐⇒ k ≡ −2 mod 7.

Thus k = −2 + 7s, where s is an integer. Then
y = 5 + 11k = 5 + 11(−2 + 7s) = −17 + 77s.



Problem 10. How many integers from 1 to 120 are
relatively prime with 120?

The number of integers from 1 to n that are relatively prime
with n is given by Euler’s phi-function φ(n).

To find φ(120), we expand 120 into a product of primes:

120 = 10 · 12 = 2 · 5 · 4 · 3 = 23 · 3 · 5.

Then

φ(120) = φ(23)φ(3)φ(5) = (23 − 22)(3− 1)(5− 1) = 32.



Problem 11. Find the multiplicative order of 7 modulo 36.

The multiplicative order of 7 modulo 36 is the smallest
positive integer n such that 7n ≡ 1 mod 36 (it is well defined
since 7 is coprime with 36). As follows from Euler’s Theorem,
the order divides

φ(36) = φ(22 · 32) = φ(22)φ(32) = (22 − 2)(32 − 3) = 12.

To find the order, we compute consecutive powers of the
congruence class of 7 modulo 36:

[7]2 = [49] = [13],
[7]3 = [7]2[7] = [13][7] = [91] = [19],
[7]4 = ([7]2)2 = [13]2 = [169] = [25] = [−11].

By now, we know that the order is greater than 4. Therefore
it is either 6 or 12. Hence it remains to compute [7]6.

[7]6 = [7]4[7]2 = [−11][13] = [−143] = [1].

Thus the order of 7 modulo 36 is 6.



Problem 12. Determine the last two digits of 303303.

The last two digits form the remainder after division by 100.
Since φ(100) = φ(22 · 52) = (22 − 2)(52 − 5) = 40, we have
340 ≡ 1 mod 100 due to Euler’s Theorem. Then

[303303] = [303]303 = [3]303 = [3]40·7+23 = ([3]40)7 [3]23 = [3]23.

To simplify computation, we use the Chinese Remainder
Theorem, which says that a congruence class [a]100 is uniquely
determined by the congruence classes [a]4 and [a]25.

Since φ(4) = φ(22) = 2 and φ(25) = φ(52) = 20, it follows
from Euler’s Theorem that 32≡1 mod 4 and 320≡1 mod 25.

Then [3]234 = [3]4 and [3]2325 = [3]325 = [33]25 = [2]25.

Since 303303 ≡ 33 ≡ 2 mod 25, the remainder of 303303 after
division by 100 is among the four numbers 2, 27 = 2 + 25,
52 = 2 + 25 · 2, and 77 = 2 + 25 · 3. We pick the one that
leaves remainder 3 after division by 4. That’s 27.


