MATH 433
Applied Algebra

Lecture 14:
Functions.
Relations.



Set theory

The primary notions of set theory are an element (an object
that we can work with), a set (a collection of objects that we
can work with), and membership. Namely, given an element
x and a set S, we have either x € S (x is a member of S) or
x ¢ S (x is not a member of S).

Any set is determined uniquely by its members (axiom of
extensionality). Given sets S; and S,, we say that S; is a
subset of S, (and write S; C S,) if every member of Sy is
also a member of S,. The axiom of extensionality can be
rephrased as follows: for any sets S; and S5,
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Set theory

Set theory can provide the foundation for all of
mathematics (though there are other ways as well).

The general idea is that every mathematical object
is modeled as a set so that objects of the same kind
are the same if and only if the corresponding sets
are the same (but the same set can serve as a
model for many objects of different kinds).

For example, one way to model nonnegative integers
is as follows: 0 is the empty set @, 1is {@}, 2is

{9,{2}}, 3is {2,{o},{9,{o}}}, and so on...



Cartesian product

Definition. The Cartesian product X x Y of
two sets X and Y is the set consisting of all ordered
pairs (x,y) such that x € X and y € Y.

The Cartesian square X x X is also denoted X?2.
If the sets X and Y are finite, then

X x Y| =1|X]|-|Y]| where |S| denotes the number
of elements in a set S.

Remark. An ordered pair (x,y) can be modeled as a set S, ,,
where S, , = {x,{x,y}} if x#yand S, = {x,{x}} if
x=y.



Functions

A function (or map) f : X — Y is an assignment: to each
x € X we assign an element f(x) € Y.

Definition. A function f : X — Y s injective (or
one-to-one) if f(x')=f(x) = x' =x.

The function f is surjective (or onto) if for each y € Y
there exists at least one x € X such that f(x) =y.

Finally, f is bijective if it is both surjective and injective.
Equivalently, if for each y € Y there is exactly one x € X
such that f(x) =y.

Suppose we have two functions f: X — Y and g: Y — X.
We say that g is the inverse function of f (denoted f~1) if
y=1f(x) < g(y)=x forall xe X and y €Y.

Theorem The inverse function f~! exists if and only if f is
bijective.
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Definition. The composition of functions f : X — Y and
g : Y — Z is a function from X to Z, denoted g o f, that is
defined by (g o f)(x) = g(f(x)), x € X.
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Properties of compositions:
e If f and g are one-to-one, then g o f is also one-to-one.
e If gof isone-to-one, then f is also one-to-one.
e If f and g are onto, then g o f is also onto.
e If gof isonto, then g is also onto.
e If f and g are bijective, then g o f is also bijective.
e If f and g are invertible, then g o f is also invertible and
(gof)yt=f1log™
e [f id; denotes the identity function on a set Z, then
foidx = f =idy o f for any function f: X — Y.

e For any functions f : X — Y and g: Y — X, we have
g=f1tifandonlyif gof =idx and fog =idy.



Relations

Definition. Let X and Y be sets. A relation R
from X to Y is given by specifying a subset of the
Cartesian product: Sgp C X x Y.

If (x,y) € Sg, then we say that x is related to y
(in the sense of R or by R) and write xRy.

Remarks. e Usually the relation R is identified
with the set Sg.
e |n the case X = Y/, the relation R is called a
relation on X.



Examples. e ‘“is equal to"
XRy <= x =y
Equivalently, R = {(x,x) | x € XN Y}.

e ‘is not equal to”
XRy <= x#y

e ‘“is mapped by f to"
xRy <=y = f(x), where f : X — Y is a function.
Equivalently, R is the graph of the function f.

e ‘“is the image under f of”
(from Y to X) yRx <= y = f(x), where f : X = Y isa
function. If f is invertible, then R is the graph of f=1.

e reversed R’
xRy <= yR'x, where R’ is a relation from Y to X.

e not R’
xRy <= not xRy, where R’ is a relation from X to Y.
Equivalently, R = (X x Y)\ R’ (set difference).



Relations on a set
e ‘is equal to”
XRy <= x =y
e ‘“is not equal to"
xRy <= x #y
e ‘is less than”
X=R, xRy <= x<y
e ‘is less than or equal to”
X =R, xRy <= x<y

e ‘is contained in”
X = the set of all subsets of some set Y,
XRy <= xCy

e ‘is congruent modulo n to”
X =7, xRy <= x =y mod n
e ‘“divides”

X =P, xRy < xly



