MATH 433 Applied Algebra Lecture 18:

Order of a permutation.

Powers of a permutation

Let π be a permutation. The positive **powers** of π are defined inductively:

 $\pi^1 = \pi$ and $\pi^{k+1} = \pi \cdot \pi^k$ for every integer $k \ge 1$.

The negative powers of π are defined as the positive powers of its inverse: $\pi^{-k} = (\pi^{-1})^k$ for every positive integer k. Finally, we set $\pi^0 = id$.

Theorem Let π be a permutation and $r, s \in \mathbb{Z}$. Then (i) $\pi^r \pi^s = \pi^{r+s}$, (ii) $(\pi^r)^s = \pi^{rs}$, (iii) $(\pi^r)^{-1} = \pi^{-r}$.

Remark. The theorem is proved in the same way as the analogous statement on invertible congruence classes.

Order of a permutation

Theorem Let π be a permutation. Then there is a positive integer *m* such that $\pi^m = id$.

Proof: Consider the list of powers: $\pi, \pi^2, \pi^3, \ldots$ Since there are only finitely many permutations of any finite set, there must be repetitions within the list. Hence we have $\pi^r = \pi^s$, where 0 < r < s. Then $\pi^{s-r} = \pi^s \pi^{-r} = \pi^s (\pi^r)^{-1} = \mathrm{id}$.

The **order** of a permutation π , denoted $o(\pi)$, is defined as the smallest positive integer *m* such that $\pi^m = id$.

Theorem Let π be a permutation of order m. Then $\pi^r = \pi^s$ if and only if $r \equiv s \mod m$. In particular, $\pi^r = \text{id}$ if and only if the order m divides r.

Theorem If a permutation π is a cycle, then the order $o(\pi)$ equals the length of the cycle.

Examples. •
$$\pi = (1 \ 2 \ 3 \ 4 \ 5).$$

 $\pi^2 = (1 \ 3 \ 5 \ 2 \ 4), \ \pi^3 = (1 \ 4 \ 2 \ 5 \ 3),$
 $\pi^4 = (1 \ 5 \ 4 \ 3 \ 2), \ \pi^5 = \text{id.}$
 $\implies o(\pi) = 5.$

•
$$\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6).$$

 $\sigma^2 = (1 \ 3 \ 5)(2 \ 4 \ 6), \ \sigma^3 = (1 \ 4)(2 \ 5)(3 \ 6),$
 $\sigma^4 = (1 \ 5 \ 3)(2 \ 6 \ 4), \ \sigma^5 = (1 \ 6 \ 5 \ 4 \ 3 \ 2), \ \sigma^6 = \mathrm{id}.$
 $\implies o(\sigma) = 6.$

•
$$\tau = (1 \ 2 \ 3)(4 \ 5).$$

 $\tau^2 = (1 \ 3 \ 2), \ \tau^3 = (4 \ 5), \ \tau^4 = (1 \ 2 \ 3),$
 $\tau^5 = (1 \ 3 \ 2)(4 \ 5), \ \tau^6 = \mathrm{id}.$
 $\implies o(\tau) = 6.$

Lemma 1 Let π and σ be two commuting permutations: $\pi\sigma = \sigma\pi$. Then (i) the powers π^r and σ^s commute for all $r, s \in \mathbb{Z}$, (ii) $(\pi\sigma)^r = \pi^r \sigma^r$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_X . Then (i) the powers π^r and σ^s are also disjoint, (ii) $\pi^r \sigma^s = \operatorname{id}$ implies $\pi^r = \sigma^s = \operatorname{id}$.

Lemma 3 Let π and σ be disjoint permutations in S_X . Then (i) they commute: $\pi \sigma = \sigma \pi$, (ii) $(\pi \sigma)^r = \operatorname{id}$ if and only if $\pi^r = \sigma^r = \operatorname{id}$, (iii) $o(\pi \sigma) = \operatorname{lcm}(o(\pi), o(\sigma))$.

Theorem Let $\pi \in S_X$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π equals the least common multiple of the lengths of the cycles $\sigma_1, \dots, \sigma_k$.

Examples

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$
.

The cycle decomposition is $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)$ or $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)(10)$. It follows that $o(\pi) = \operatorname{lcm}(7, 4) = \operatorname{lcm}(7, 4, 1) = 28$.

•
$$\sigma = (1 \ 2)(3 \ 4)(5 \ 6).$$

This permutation is a product of three disjoint transpositions. Therefore the order of σ equals lcm(2,2,2) = 2.

•
$$\tau = (1 \ 2)(1 \ 3)(1 \ 4)(1 \ 5).$$

The permutation is given as a product of transpositions. However, the transpositions are not disjoint and so this representation does not help to find the order of τ . The cycle decomposition is $\tau = (5 \ 4 \ 3 \ 2 \ 1)$. Hence τ is a cycle of length 5 so that $o(\tau) = 5$.