## MATH 433 <br> Applied Algebra

## Lecture 18: <br> Order of a permutation.

## Powers of a permutation

Let $\pi$ be a permutation. The positive powers of $\pi$ are defined inductively:

$$
\pi^{1}=\pi \quad \text { and } \quad \pi^{k+1}=\pi \cdot \pi^{k} \quad \text { for every integer } \quad k \geq 1
$$

The negative powers of $\pi$ are defined as the positive powers of its inverse: $\pi^{-k}=\left(\pi^{-1}\right)^{k}$ for every positive integer $k$.
Finally, we set $\pi^{0}=\mathrm{id}$.
Theorem Let $\pi$ be a permutation and $r, s \in \mathbb{Z}$. Then
(i) $\pi^{r} \pi^{s}=\pi^{r+s}$,
(ii) $\left(\pi^{r}\right)^{s}=\pi^{r s}$,
(iii) $\left(\pi^{r}\right)^{-1}=\pi^{-r}$.

Remark. The theorem is proved in the same way as the analogous statement on invertible congruence classes.

## Order of a permutation

Theorem Let $\pi$ be a permutation. Then there is a positive integer $m$ such that $\pi^{m}=\mathrm{id}$.
Proof: Consider the list of powers: $\pi, \pi^{2}, \pi^{3}, \ldots$. Since there are only finitely many permutations of any finite set, there must be repetitions within the list. Hence we have $\pi^{r}=\pi^{s}$, where $0<r<s$. Then $\pi^{s-r}=\pi^{s} \pi^{-r}=\pi^{s}\left(\pi^{r}\right)^{-1}=\mathrm{id}$.

The order of a permutation $\pi$, denoted $o(\pi)$, is defined as the smallest positive integer $m$ such that $\pi^{m}=\mathrm{id}$.

Theorem Let $\pi$ be a permutation of order $m$. Then $\pi^{r}=\pi^{s}$ if and only if $r \equiv s \bmod m$. In particular, $\pi^{r}=\mathrm{id}$ if and only if the order $m$ divides $r$.

Theorem If a permutation $\pi$ is a cycle, then the order $o(\pi)$ equals the length of the cycle.

Examples. • $\pi=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right.$ 5).

$$
\begin{aligned}
& \pi^{2}=\left(\begin{array}{lllll}
1 & 3 & 5 & 2 & 4
\end{array}\right), \pi^{3}=\left(\begin{array}{lllll}
1 & 4 & 2 & 5 & 3
\end{array}\right), \\
& \pi^{4}=\left(\begin{array}{lllll}
1 & 5 & 4 & 3 & 2
\end{array}\right), \pi^{5}=\mathrm{id} \\
& \Longrightarrow o(\pi)=5
\end{aligned}
$$

- $\sigma=\left(\begin{array}{ll}1 & 24456\end{array}\right)$.
$\sigma^{2}=(135)(246), \sigma^{3}=(14)(25)(36)$,
$\sigma^{4}=(153)(264), \sigma^{5}=(165432), \sigma^{6}=\mathrm{id}$.
$\Longrightarrow o(\sigma)=6$.
- $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)$.
$\tau^{2}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right), \tau^{3}=\left(\begin{array}{ll}4 & 5\end{array}\right), \tau^{4}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$,
$\tau^{5}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}4\end{array}\right), \tau^{6}=\mathrm{id}$.
$\Longrightarrow o(\tau)=6$.

Lemma 1 Let $\pi$ and $\sigma$ be two commuting permutations: $\pi \sigma=\sigma \pi$. Then
(i) the powers $\pi^{r}$ and $\sigma^{s}$ commute for all $r, s \in \mathbb{Z}$,
(ii) $(\pi \sigma)^{r}=\pi^{r} \sigma^{r}$ for all $r \in \mathbb{Z}$.

Lemma 2 Let $\pi$ and $\sigma$ be disjoint permutations in $S_{X}$. Then (i) the powers $\pi^{r}$ and $\sigma^{s}$ are also disjoint,
(ii) $\pi^{r} \sigma^{s}=\mathrm{id}$ implies $\pi^{r}=\sigma^{s}=\mathrm{id}$.

Lemma 3 Let $\pi$ and $\sigma$ be disjoint permutations in $S_{X}$. Then
(i) they commute: $\pi \sigma=\sigma \pi$,
(ii) $(\pi \sigma)^{r}=\mathrm{id}$ if and only if $\pi^{r}=\sigma^{r}=\mathrm{id}$,
(iii) $o(\pi \sigma)=\operatorname{lcm}(o(\pi), o(\sigma))$.

Theorem Let $\pi \in S_{X}$ and suppose that $\pi=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ is a decomposition of $\pi$ as a product of disjoint cycles. Then the order of $\pi$ equals the least common multiple of the lengths of the cycles $\sigma_{1}, \ldots, \sigma_{k}$.

## Examples

$$
\text { - } \pi=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8
\end{array}\right) .
$$

The cycle decomposition is $\pi=(1249375)(612811)$ or $\pi=(1249375)(612811)(10)$. It follows that $o(\pi)=\operatorname{lcm}(7,4)=\operatorname{lcm}(7,4,1)=28$.

- $\sigma=(12)(34)(56)$.

This permutation is a product of three disjoint transpositions. Therefore the order of $\sigma$ equals $\operatorname{lcm}(2,2,2)=2$.

- $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{l}1\end{array}\right)(15)$.

The permutation is given as a product of transpositions. However, the transpositions are not disjoint and so this representation does not help to find the order of $\tau$. The cycle decomposition is $\tau=\left(\begin{array}{l}5 \\ 4\end{array} 321\right)$. Hence $\tau$ is a cycle of length 5 so that $o(\tau)=5$.

