MATH 433
 Applied Algebra

Lecture 19:
Sign of a permutation.
Classical definition of the determinant.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \geq 2$ elements is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where $\tau_{i}, \tau_{j}^{\prime}$ are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even number of transpositions, and odd if it is a product of an odd number of transpositions.
The $\boldsymbol{\operatorname { s i g n }} \operatorname{sgn}(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_{X}$.
(ii) $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$ for any $\pi \in S_{X}$.
(iii) $\operatorname{sgn}(\mathrm{id})=1$.
(iv) $\operatorname{sgn}(\tau)=-1$ for any transposition τ.
(v) $\operatorname{sgn}(\sigma)=(-1)^{r-1}$ for any cycle σ of length r.

Examples

- $\pi=\left(\begin{array}{cccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8\end{array}\right)$.

First we decompose π into a product of disjoint cycles:

$$
\pi=(124937 \text { 5)(6 } 128 \text { 11). }
$$

The cycle $\sigma_{1}=(1249375)$ has length 7 , hence it is an even permutation. The cycle $\sigma_{2}=\left(\begin{array}{ll}612811)\end{array}\right.$ has length 4, hence it is an odd permutation. Then

$$
\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\sigma_{1} \sigma_{2}\right)=\operatorname{sgn}\left(\sigma_{1}\right) \operatorname{sgn}\left(\sigma_{2}\right)=1 \cdot(-1)=-1
$$

- $\pi=\left(\begin{array}{ll}2 & 4\end{array}\right)(12)(234)$.
π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1 . Even though the cycles are not disjoint, $\operatorname{sgn}(\pi)=1 \cdot(-1) \cdot 1=-1$.

Let $\pi \in S(n)$ and i, j be integers, $1 \leq i<j \leq n$. We say that the permutation π preserves order of the pair (i, j) if $\pi(i)<\pi(j)$. Otherwise π makes an inversion. Denote by $N(\pi)$ the number of inversions made by the permutation π.

Lemma 1 Let $\tau, \pi \in S(n)$ and suppose that τ is an adjacent transposition, $\tau=(k k+1)$. Then $|N(\tau \pi)-N(\pi)|=1$.
Proof: For every pair $(i, j), 1 \leq i<j \leq n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau \pi(i), \tau \pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\}=\{k, k+1\}$. The lemma follows.

Lemma 2 Let $\pi \in S(n)$ and $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ be adjacent transpositions. Then (i) for any $\pi \in S(n)$ the numbers k and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k} \pi\right)-N(\pi)$ are of the same parity,
(ii) the numbers k and $N\left(\tau_{1} \tau_{2} \ldots \tau_{k}\right)$ are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi=\mathrm{id}$.

Lemma 3 (i) Any cycle of length r is a product of $r-1$ transpositions. (ii) Any transposition is a product of an odd number of adjacent transpositions.

$$
\text { Proof: (i) }\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{r}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ll}
x_{3} & x_{4}
\end{array}\right) \ldots\left(x_{r-1} x_{r}\right) .
$$

(ii) $(k k+r)=\sigma^{-1}(k k+1) \sigma$, where $\sigma=(k+1 k+2 \ldots k+r)$.

By the above, $\sigma=(k+1 k+2)(k+2 k+3) \ldots(k+r-1 k+r)$ and $\sigma^{-1}=(k+r k+r-1) \ldots(k+3 k+2)(k+2 k+1)$.

Theorem (i) Any permutation is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}$, where τ_{i} are transpositions, then the numbers k and $N(\pi)$ are of the same parity.
Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.
(ii) By Lemma 3, each of $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ is a product of an odd number of adjacent transpositions. Hence $\pi=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where τ_{i}^{\prime} are adjacent transpositions and number m is of the same parity as k. By Lemma $2, m$ has the same parity as $N(\pi)$.

Alternating group

Given an integer $n \geq 2$, the alternating group on n symbols, denoted A_{n} or $A(n)$, is the set of all even permutations in the symmetric group $S(n)$.

Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi \sigma$ is also in $A(n)$.
(ii) The identity function id is in $A(n)$.
(iii) For any permutation $\pi \in A(n)$, the inverse π^{-1} is in $A(n)$.

Theorem The alternating group $A(n)$ has $n!/ 2$ elements.
Proof: Consider a function $F: S(n) \rightarrow S(n)$ given by
 Hence $|F(E)|=|E|$ for any set $E \subset S(n)$. We observe that $F(A(n)) \subset S(n) \backslash A(n)$ and $F(S(n) \backslash A(n)) \subset A(n)$.
Therefore $|A(n)| \leq|S(n) \backslash A(n)|$ and $|S(n) \backslash A(n)| \leq|A(n)|$ so that $|A(n)|=|S(n) \backslash A(n)|=|S(n)| / 2=n!/ 2$.

Examples. - The alternating group $A(3)$ has 3 elements: the identity function and two cycles of length 3, (1 2 3) and (1 32).

- The alternating group $A(4)$ has 12 elements of the following cycle shapes: id, (123), and (1 2) (3 4).
- The alternating group $A(5)$ has 60 elements of the following cycle shapes: id, (1 23), (12)(34), and (1 2345).

Classical definition of the determinant

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\begin{array}{r}
11 \\
a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} .
\end{array}
$$

If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix then

$$
\operatorname{det} A=\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1, \pi(1)} a_{2, \pi(2)} \ldots a_{n, \pi(n)}
$$

where π runs over all permutations of $\{1,2, \ldots, n\}$.

Theorem $\operatorname{det} A^{T}=\operatorname{det} A$.

Proof: Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$. Then $A^{T}=\left(b_{i j}\right)_{1 \leq i, j \leq n}$, where $b_{i j}=a_{j j}$. We have

$$
\begin{aligned}
\operatorname{det} A^{T} & =\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) b_{1, \pi(1)} b_{2, \pi(2)} \ldots b_{n, \pi(n)} \\
& =\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{\pi(1), 1} a_{\pi(2), 2} \ldots a_{\pi(n), n} \\
& =\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1, \pi^{-1}(1)} a_{2, \pi^{-1}(2)} \ldots a_{n, \pi^{-1}(n)} .
\end{aligned}
$$

When π runs over all permutations of $\{1,2, \ldots, n\}$, so does $\sigma=\pi^{-1}$. It follows that $\operatorname{det} A^{T}=\sum_{\sigma \in S(n)} \operatorname{sgn}\left(\sigma^{-1}\right) a_{1, \sigma(1)} a_{2, \sigma(2)} \ldots a_{n, \sigma(n)}$

$$
=\sum_{\sigma \in S(n)} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \ldots a_{n, \sigma(n)}=\operatorname{det} A .
$$

Theorem 1 Suppose A is a square matrix and B is obtained from A by exchanging two rows. Then $\operatorname{det} B=-\operatorname{det} A$.

Theorem 2 Suppose A is a square matrix and B is obtained from A by permuting its rows. Then $\operatorname{det} B=\operatorname{det} A$ if the permutation is even and $\operatorname{det} B=-\operatorname{det} A$ if the permutation is odd.

Proof: Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be an $n \times n$ matrix. Suppose that a matrix B is obtained from A by permuting its rows according to a permutation $\sigma \in S(n)$. Then $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$, where $b_{\sigma(i), j}=a_{i j}$. Equivalently, $b_{i j}=a_{\sigma^{-1}(i), j}$. We have

$$
\begin{aligned}
\operatorname{det} B & =\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) b_{1, \pi(1)} b_{2, \pi(2)} \ldots b_{n, \pi(n)} \\
& =\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{\sigma^{-1}(1), \pi(1)} a_{\sigma^{-1}(2), \pi(2)} \ldots a_{\sigma^{-1}(n), \pi(n)} \\
& =\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1, \pi \sigma(1)} a_{2, \pi \sigma(2)} \ldots a_{n, \pi \sigma(n)} .
\end{aligned}
$$

When π runs over all permutations of $\{1,2, \ldots, n\}$, so does $\tau=\pi \sigma$. It follows that
$\operatorname{det} B=\sum_{\tau \in S(n)} \operatorname{sgn}\left(\tau \sigma^{-1}\right) a_{1, \tau(1)} a_{2, \tau(2)} \ldots a_{n, \tau(n)}$
$=\operatorname{sgn}\left(\sigma^{-1}\right) \sum_{\tau \in S(n)} \operatorname{sgn}(\tau) a_{1, \tau(1)} a_{2, \tau(2)} \ldots a_{n, \tau(n)}=\operatorname{sgn}(\sigma) \operatorname{det} A$.

The Vandermonde determinant

Definition. The Vandermonde determinant is the determinant of the following matrix

$$
V=\left(\begin{array}{lllll}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

where $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$. Equivalently, $V=\left(a_{i j}\right)_{1 \leq i, j \leq n}$, where $a_{i j}=x_{i}^{j-1}$.

Theorem

$$
\left|\begin{array}{lllll}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Corollary Consider a polynomial

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Then

$$
p\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)=\operatorname{sgn}(\pi) p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for any permutation $\pi \in S(n)$.

