MATH 433

Lecture 19:

_

. .

Applied Algebra

Sign of a permutation.

Classical definition of the determinant.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \ge 2$ elements is a product of transpositions. **(ii)** If $\pi = \tau_1 \tau_2 \dots \tau_k = \tau_1' \tau_2' \dots \tau_m'$, where τ_i, τ_j' are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The **sign** $\operatorname{sgn}(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi)\operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_X$.

- (ii) $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S_X$.
- (iii) $\operatorname{sgn}(\operatorname{id}) = 1$.
- (iv) $sgn(\tau) = -1$ for any transposition τ .
- (v) $\operatorname{sgn}(\sigma) = (-1)^{r-1}$ for any cycle σ of length r.

Examples

$$\bullet \ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}.$$

First we decompose π into a product of disjoint cycles:

$$\pi = (1\ 2\ 4\ 9\ 3\ 7\ 5)(6\ 12\ 8\ 11).$$

The cycle $\sigma_1=(1\ 2\ 4\ 9\ 3\ 7\ 5)$ has length 7, hence it is an even permutation. The cycle $\sigma_2=(6\ 12\ 8\ 11)$ has length 4, hence it is an odd permutation. Then

$$\operatorname{sgn}(\pi) = \operatorname{sgn}(\sigma_1 \sigma_2) = \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) = 1 \cdot (-1) = -1.$$

$$\bullet \pi = (2 \ 4 \ 3)(1 \ 2)(2 \ 3 \ 4).$$

 π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1. Even though the cycles are not disjoint, $\operatorname{sgn}(\pi) = 1 \cdot (-1) \cdot 1 = -1$.

Let $\pi \in S(n)$ and i,j be integers, $1 \le i < j \le n$. We say that the permutation π preserves order of the pair (i,j) if $\pi(i) < \pi(j)$. Otherwise π makes an **inversion**. Denote by $N(\pi)$ the number of inversions made by the permutation π .

Lemma 1 Let $\tau, \pi \in S(n)$ and suppose that τ is an adjacent transposition, $\tau = (k \ k+1)$. Then $|N(\tau\pi) - N(\pi)| = 1$.

Proof: For every pair (i,j), $1 \le i < j \le n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau\pi(i), \tau\pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\} = \{k, k+1\}$. The lemma follows.

Lemma 2 Let $\pi \in S(n)$ and $\tau_1, \tau_2, \ldots, \tau_k$ be adjacent transpositions. Then **(i)** for any $\pi \in S(n)$ the numbers k and $N(\tau_1\tau_2\ldots\tau_k\pi)-N(\pi)$ are of the same parity, **(ii)** the numbers k and $N(\tau_1\tau_2\ldots\tau_k)$ are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi=\mathrm{id}$.

Lemma 3 (i) Any cycle of length r is a product of r-1 transpositions. **(ii)** Any transposition is a product of an odd number of adjacent transpositions.

Proof: (i)
$$(x_1 \ x_2 \ \dots \ x_r) = (x_1 \ x_2)(x_2 \ x_3)(x_3 \ x_4) \dots (x_{r-1} \ x_r).$$

(ii) $(k \ k+r) = \sigma^{-1}(k \ k+1)\sigma$, where $\sigma = (k+1 \ k+2 \ \dots \ k+r).$

By the above, $\sigma = (k+1 \ k+2)(k+2 \ k+3) \dots (k+r-1 \ k+r)$ and $\sigma^{-1} = (k+r \ k+r-1) \dots (k+3 \ k+2)(k+2 \ k+1)$.

Theorem (i) Any permutation is a product of transpositions. **(ii)** If $\pi = \tau_1 \tau_2 \dots \tau_k$, where τ_i are transpositions, then the numbers k and $N(\pi)$ are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of $\tau_1, \tau_2, \ldots, \tau_k$ is a product of an odd number of adjacent transpositions. Hence $\pi = \tau_1' \tau_2' \ldots \tau_m'$, where τ_i' are adjacent transpositions and number m is of the same parity as k. By Lemma 2, m has the same parity as $N(\pi)$.

Alternating group

Given an integer $n \ge 2$, the **alternating group** on n symbols, denoted A_n or A(n), is the set of all even permutations in the symmetric group S(n).

Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi\sigma$ is also in A(n).

(ii) The identity function id is in A(n). (iii) For any permutation $\pi \in A(n)$, the inverse π^{-1} is in A(n).

Theorem The alternating group A(n) has n!/2 elements.

Proof: Consider a function $F: S(n) \to S(n)$ given by $F(\pi) = (1\ 2)\pi$. Note that F is bijective (indeed, $F^{-1} = F$). Hence |F(E)| = |E| for any set $E \subset S(n)$. We observe that $F(A(n)) \subset S(n) \setminus A(n)$ and $F(S(n) \setminus A(n)) \subset A(n)$. Therefore $|A(n)| \le |S(n) \setminus A(n)|$ and $|S(n) \setminus A(n)| \le |A(n)|$ so that $|A(n)| = |S(n) \setminus A(n)| = |S(n)|/2 = n!/2$.

Examples. • The alternating group A(3) has 3 elements: the identity function and two cycles of length 3, $(1\ 2\ 3)$ and $(1\ 3\ 2)$.

- The alternating group A(4) has 12 elements of the following **cycle shapes**: id, $(1\ 2\ 3)$, and $(1\ 2)(3\ 4)$.
- The alternating group A(5) has 60 elements of the following cycle shapes: id, $(1\ 2\ 3)$, $(1\ 2)(3\ 4)$, and $(1\ 2\ 3\ 4\ 5)$.

Classical definition of the determinant

Definition.
$$\det(a) = a$$
, $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$, $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$.

If
$$A=(a_{ij})$$
 is an $n{ imes}n$ matrix then
$$\det A=\sum_{\pi\in S(n)}\operatorname{sgn}(\pi)\,a_{1,\pi(1)}\,a_{2,\pi(2)}\dots a_{n,\pi(n)},$$

where π runs over all permutations of $\{1, 2, ..., n\}$.

Theorem $\det A^T = \det A$.

 $\sigma \in S(n)$

Proof: Let $A=(a_{ij})_{1\leq i,j\leq n}$. Then $A^T=(b_{ij})_{1\leq i,j\leq n}$, where $b_{ij}=a_{ji}$. We have

$$\det A^{T} = \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) \ b_{1,\pi(1)} \ b_{2,\pi(2)} \dots b_{n,\pi(n)}$$

$$= \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) \ a_{\pi(1),1} \ a_{\pi(2),2} \dots a_{\pi(n),n}$$

$$= \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) \ a_{1,\pi^{-1}(1)} \ a_{2,\pi^{-1}(2)} \dots a_{n,\pi^{-1}(n)}.$$

When π runs over all permutations of $\{1,2,\ldots,n\}$, so does $\sigma=\pi^{-1}$. It follows that

$$\det A^T = \sum_{\sigma \in S(n)} \operatorname{sgn}(\sigma^{-1}) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)}$$
$$= \sum_{\sigma \in S(n)} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)} = \det A.$$

Theorem 1 Suppose A is a square matrix and B is obtained from A by exchanging two rows. Then $\det B = -\det A$.

Theorem 2 Suppose A is a square matrix and B is obtained from A by permuting its rows. Then $\det B = \det A$ if the permutation is even and $\det B = -\det A$ if the permutation is odd.

Proof: Let $A = (a_{ii})_{1 \le i,i \le n}$ be an $n \times n$ matrix. Suppose that a matrix B is obtained from A by permuting its rows according to a permutation $\sigma \in S(n)$. Then $B = (b_{ii})_{1 \le i,j \le n}$, where $b_{\sigma(i),j} = a_{ii}$. Equivalently, $b_{ii} = a_{\sigma^{-1}(i),j}$. We have

 $= \sum \operatorname{sgn}(\pi) a_{\sigma^{-1}(1),\pi(1)} a_{\sigma^{-1}(2),\pi(2)} \dots a_{\sigma^{-1}(n),\pi(n)}$

$$=\sum_{\pi\in S(n)}\operatorname{sgn}(\pi)\,a_{1,\pi\sigma(1)}\,a_{2,\pi\sigma(2)}\dots a_{n,\pi\sigma(n)}.$$
 When π runs over all permutations of $\{1,2,\dots,$ $\tau=\pi\sigma.$ It follows that
$$\det B=\sum_{\pi}\operatorname{sgn}(\tau\sigma^{-1})\,a_{1,\tau(1)}\,a_{2,\tau(2)}\dots a_{n,\tau(n)}$$

 $\det B = \sum \operatorname{sgn}(\pi) b_{1,\pi(1)} b_{2,\pi(2)} \dots b_{n,\pi(n)}$

 $\pi \in S(n)$

 $\pi \in S(n)$

When π runs over all permutations of $\{1, 2, ..., n\}$, so does

$$\det B = \sum_{\tau \in S(n)} \operatorname{sgn}(\tau \sigma^{-1}) a_{1,\tau(1)} a_{2,\tau(2)} \dots a_{n,\tau(n)}$$

 $=\operatorname{sgn}(\sigma^{-1})\sum\operatorname{sgn}(\tau)\,a_{1,\tau(1)}\,a_{2,\tau(2)}\ldots a_{n,\tau(n)}=\operatorname{sgn}(\sigma)\det A.$ $\tau \in S(n)$

The Vandermonde determinant

Definition. The **Vandermonde determinant** is the determinant of the following matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix},$$

where $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Equivalently, $V = (a_{ij})_{1 \leq i,j \leq n}$, where $a_{ij} = x_i^{j-1}$.

Theorem

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Corollary Consider a polynomial

$$p(x_1, x_2, \ldots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Then

$$p(x_{\pi(1)},x_{\pi(2)},\ldots,x_{\pi(n)})=\operatorname{sgn}(\pi)\,p(x_1,x_2,\ldots,x_n)$$
 for any permutation $\pi\in\mathcal{S}(n)$.