MATH 433
Applied Algebra

Lecture 20:
 Abstract groups.

Binary operation

Definition. A binary operation $*$ on a nonempty set S is simply a function $*: S \times S \rightarrow S$.

The usual notation for the element $*(x, y)$ is $x * y$.
The pair $(S, *)$ is called a binary algebraic structure.
"Structures are the weapons of the mathematician."
Nicholas Bourbaki

Abstract group

Definition. A group is a set G, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements g and h of $G, g * h$ is an element of G;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of G, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse) for every $g \in G$ there exists an element $h \in G$, called the inverse of g, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

Basic examples. - Real numbers \mathbb{R} with addition.
(G1) $x, y \in \mathbb{R} \Longrightarrow x+y \in \mathbb{R}$
(G2) $(x+y)+z=x+(y+z)$
(G3) the identity element is 0 as $x+0=0+x=x$
(G4) the inverse of x is $-x$ as $x+(-x)=(-x)+x=0$
(G5) $x+y=y+x$

- Nonzero real numbers $\mathbb{R} \backslash\{0\}$ with multiplication.
(G1) $x \neq 0$ and $y \neq 0 \Longrightarrow x y \neq 0$
(G2) $(x y) z=x(y z)$
(G3) the identity element is 1 as $x 1=1 x=x$
(G4) the inverse of x is x^{-1} as $x x^{-1}=x^{-1} x=1$
(G5) $x y=y x$

The two basic examples give rise to two kinds of notation for a general group $(G, *)$.

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- $a * b$ is denoted $a b$,
- the identity element is denoted 1 ,
- the inverse of g is denoted g^{-1}.

Additive notation: We think of the group operation $*$ as some kind of addition, namely,

- $a * b$ is denoted $a+b$,
- the identity element is denoted 0 ,
- the inverse of g is denoted $-g$.

Remark. Default notation is multiplicative (but the identity element may be denoted e or id or 1_{G}). The additive notation may be used only for commutative groups.

Examples: numbers

- Real numbers \mathbb{R} with addition.
- Nonzero real numbers $\mathbb{R} \backslash\{0\}$ with multiplication.
- Integers \mathbb{Z} with addition.
(G1) $a, b \in \mathbb{Z} \Longrightarrow a+b \in \mathbb{Z}$
(G2) $(a+b)+c=a+(b+c)$
(G3) the identity element is 0 as $a+0=0+a=a$ and $0 \in \mathbb{Z}$
(G4) the inverse of $a \in \mathbb{Z}$ is $-a$ as
$a+(-a)=(-a)+a=0$ and $-a \in \mathbb{Z}$
(G5) $a+b=b+a$

Examples: modular arithmetic

- The set \mathbb{Z}_{n} of congruence classes modulo n with addition.
(G1) $[a],[b] \in \mathbb{Z}_{n} \Longrightarrow[a]+[b]=[a+b] \in \mathbb{Z}_{n}$ (G2) $([a]+[b])+[c]=[a+b+c]=[a]+([b]+[c])$
(G3) the identity element is [0] as $[a]+[0]=[0]+[a]=[a]$ (G4) the inverse of $[a]$ is $[-a]$ as $[a]+[-a]=[-a]+[a]=[0]$
(G5) $[a]+[b]=[a+b]=[b]+[a]$

Examples: modular arithmetic

- The set G_{n} of invertible congruence classes modulo n with multiplication.
A congruence class $[a]_{n} \in \mathbb{Z}_{n}$ belongs to G_{n} if $\operatorname{gcd}(a, n)=1$.
(G1) $[a]_{n},[b]_{n} \in G_{n} \Longrightarrow \operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$
$\Longrightarrow \operatorname{gcd}(a b, n)=1 \Longrightarrow[a]_{n}[b]_{n}=[a b]_{n} \in G_{n}$
(G2) $([a][b])[c]=[a b c]=[a]([b][c])$
(G3) the identity element is [1] as $[a][1]=[1][a]=[a]$
(G4) the inverse of $[a]$ is $[a]^{-1}$ by definition of $[a]^{-1}$
(G5) $[a][b]=[a b]=[b][a]$

Examples: permutations

- Symmetric group $S(n)$: all permutations on n elements with composition (= multiplication).
(G1) π and σ are bijective functions from the set $\{1,2, \ldots, n\}$ to itself \Longrightarrow so is $\pi \sigma$
(G2) $(\pi \sigma) \tau$ and $\pi(\sigma \tau)$ applied to $k, 1 \leq k \leq n$, both yield $\pi(\sigma(\tau(k)))$
(G3) the identity element is id as $\pi \mathrm{id}=\mathrm{id} \pi=\pi$
(G4) the inverse permutation π^{-1} satisfies $\pi \pi^{-1}=\pi^{-1} \pi=\mathrm{id}$ (conversely, if $\pi \sigma=\sigma \pi=\mathrm{id}$, then $\sigma=\pi^{-1}$)
(G5) fails for $n \geq 3$ as (12)(23) $=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ while $\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)$

Examples: permutations

- Alternating group $A(n)$: even permutations on n elements with composition ($=$ multiplication).
(G1) π and σ are even permutations $\Longrightarrow \pi \sigma$ is even (G2) $(\pi \sigma) \tau=\pi(\sigma \tau)$ holds in $A(n)$ as it holds in a larger set $S(n)$
(G3) the identity element from $S(n)$, which is id, is an even permutation, hence it is the identity element in $A(n)$ as well (G4) π is an even permutation $\Longrightarrow \pi^{-1}$ is also even
(G5) fails for $n \geq 4$ as (1 23) (2 34) $=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ while $(234)(123)=(13)(24)$

Examples: set theory

- All subsets of a set X with the operation of symmetric difference: $A \triangle B=(A \backslash B) \cup(B \backslash A)$.

(G1) $A, B \subset X \Longrightarrow A \triangle B \subset X$.
(G2) $(A \triangle B) \triangle C=A \triangle(B \triangle C)$ consists of those elements of X that belong to an odd number of sets A, B, C (either to just one of them or to all three)
(G3) the identity element is the empty set \emptyset since $A \triangle \emptyset=\emptyset \triangle A=A$ for any set A
(G4) the inverse of a set $A \subset X$ is A itself: $A \triangle A=\emptyset$
(G5) $A \triangle B=B \triangle A=(A \cup B) \backslash(A \cap B)$

Examples: logic

- Binary logic $\mathcal{L}=\{$ "true", "false" $\}$ with the operation XOR (eXclusive OR): "x XOR y " means "either x or y (but not both)".
(G1) "true XOR false" = "false XOR true" = "true", "true XOR true" $=$ "false XOR false" $=$ "false" (G2) " x XOR y) XOR $z "=" x \operatorname{XOR}(y \operatorname{XOR} z) "$
(G3) the identity element is "false"
(G4) the inverse of $x \in \mathcal{L}$ is x itself
(G5) " x XOR y " $=" y$ XOR x "

More examples

- Any vector space V with addition.

Those axioms of the vector space that involve only addition are exactly axioms of the commutative group.

- Trivial group $(G, *)$, where $G=\{e\}$ and $e * e=e$.
Verification of all axioms is straightforward.
- Positive real numbers with the operation $x * y=2 x y$.
(G1) $x, y>0 \Longrightarrow 2 x y>0$
(G2) $(x * y) * z=x *(y * z)=4 x y z$
(G3) the identity element is $\frac{1}{2}$ as $x * e=x$ means $2 e x=x$ (G4) the inverse of x is $\frac{1}{4 x}$ as $x * y=\frac{1}{2}$ means $4 x y=1$
(G5) $x * y=y * x=2 x y$

Counterexamples

- Real numbers \mathbb{R} with multiplication.

0 has no inverse.

- Positive integers with addition.

No identity element.

- Nonnegative integers with addition.

No inverse element for positive numbers.

- Odd permutations with multiplication.

The set is not closed under the operation.

- Integers with subtraction.

The operation is not associative: $(a-b)-c=a-(b-c)$ only if $c=0$.

- All subsets of a set X with the operation $A * B=A \cup B$. The operation is associative and commutative, the empty set is the identity element. However there is no inverse for a nonempty set.

