Lecture 20:

MATH 433

Applied Algebra

Abstract groups.

Binary operation

Definition. A **binary operation** * on a nonempty set S is simply a function $*: S \times S \rightarrow S$.

The usual notation for the element *(x, y) is x * y.

The pair (S, *) is called a **binary algebraic** structure.

"Structures are the weapons of the mathematician."

Nicholas Bourbaki

Abstract group

Definition. A **group** is a set G, together with a binary operation *, that satisfies the following axioms:

(G1: closure)

for all elements g and h of G, g*h is an element of G;

(G2: associativity)

(g * h) * k = g * (h * k) for all $g, h, k \in G$;

(G3: existence of identity)

there exists an element $e \in G$, called the **identity** (or **unit**) of G, such that e * g = g * e = g for all $g \in G$;

(G4: existence of inverse)

for every $g \in G$ there exists an element $h \in G$, called the **inverse** of g, such that g * h = h * g = e.

The group (G, *) is said to be **commutative** (or **Abelian**) if it satisfies an additional axiom:

(G5: commutativity) g * h = h * g for all $g, h \in G$.

Basic examples. ullet Real numbers $\mathbb R$ with addition.

(G1)
$$x, y \in \mathbb{R} \implies x + y \in \mathbb{R}$$

(G2) $(x + y) + z = x + (y + z)$
(G3) the identity element is 0 as $x + 0 = 0 + x = x$
(G4) the inverse of x is $-x$ as $x + (-x) = (-x) + x = 0$

- ullet Nonzero real numbers $\mathbb{R}\setminus\{0\}$ with multiplication.
- (G1) $x \neq 0$ and $y \neq 0 \implies xy \neq 0$ (G2) (xy)z = x(yz)

(G5) x + v = v + x

- (G3) the identity element is 1 as x1 = 1x = x
- (G4) the inverse of x is x^{-1} as $xx^{-1} = x^{-1}x = 1$ (G5) xy = yx

The two basic examples give rise to two kinds of notation for a general group (G,*).

Multiplicative notation: We think of the group operation * as some kind of multiplication, namely,

- a * b is denoted ab,
- the identity element is denoted 1,
- the inverse of g is denoted g^{-1} .

Additive notation: We think of the group operation * as some kind of addition, namely,

- a * b is denoted a + b,
- the identity element is denoted 0,
- the inverse of g is denoted -g.

Remark. Default notation is multiplicative (but the identity element may be denoted e or id or 1_G). The additive notation may be used only for commutative groups.

Examples: numbers

- ullet Real numbers $\mathbb R$ with addition.
- \bullet Nonzero real numbers $\mathbb{R}\setminus\{0\}$ with multiplication.
 - Integers \mathbb{Z} with addition.

(G1)
$$a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z}$$

(G2)
$$(a+b)+c=a+(b+c)$$

(G3) the identity element is 0 as
$$a + 0 = 0 + a = a$$
 and $0 \in \mathbb{Z}$

(G4) the inverse of
$$a \in \mathbb{Z}$$
 is $-a$ as

$$a+(-a)=(-a)+a=0$$
 and $-a\in\mathbb{Z}$

$$(\mathsf{G5})\ a+b=b+a$$

Examples: modular arithmetic

• The set \mathbb{Z}_n of congruence classes modulo n with addition.

(G1)
$$[a], [b] \in \mathbb{Z}_n \implies [a] + [b] = [a+b] \in \mathbb{Z}_n$$

(G2) $([a] + [b]) + [c] = [a+b+c] = [a] + ([b] + [c])$
(G3) the identity element is $[0]$ as $[a] + [0] = [0] + [a] = [a]$
(G4) the inverse of $[a]$ is $[-a]$ as $[a] + [-a] = [-a] + [a] = [0]$
(G5) $[a] + [b] = [a+b] = [b] + [a]$

Examples: modular arithmetic

• The set G_n of invertible congruence classes modulo n with multiplication.

A congruence class $[a]_n \in \mathbb{Z}_n$ belongs to G_n if gcd(a, n) = 1.

(G1)
$$[a]_n, [b]_n \in G_n \implies \gcd(a, n) = \gcd(b, n) = 1$$

 $\implies \gcd(ab, n) = 1 \implies [a]_n [b]_n = [ab]_n \in G_n$
(G2) $([a][b])[c] = [abc] = [a]([b][c])$
(G3) the identity element is [1] as $[a][1] = [1][a] = [a]$
(G4) the inverse of $[a]$ is $[a]^{-1}$ by definition of $[a]^{-1}$
(G5) $[a][b] = [ab] = [b][a]$

Examples: permutations

• Symmetric group S(n): all permutations on n elements with composition (= multiplication).

```
(G1) \pi and \sigma are bijective functions from the set \{1,2,\ldots,n\} to itself \Longrightarrow so is \pi\sigma (G2) (\pi\sigma)\tau and \pi(\sigma\tau) applied to k, 1 \le k \le n, both yield \pi(\sigma(\tau(k))) (G3) the identity element is id as \pi \operatorname{id} = \operatorname{id} \pi = \pi (G4) the inverse permutation \pi^{-1} satisfies \pi\pi^{-1} = \pi^{-1}\pi = \operatorname{id} (conversely, if \pi\sigma = \sigma\pi = \operatorname{id}, then \sigma = \pi^{-1}) (G5) fails for n \ge 3 as (1\ 2)(2\ 3) = (1\ 2\ 3) while (2\ 3)(1\ 2) = (1\ 3\ 2)
```

Examples: permutations

• Alternating group A(n): even permutations on n elements with composition (= multiplication).

(G1) π and σ are even permutations $\implies \pi\sigma$ is even (G2) $(\pi\sigma)\tau = \pi(\sigma\tau)$ holds in A(n) as it holds in a larger set S(n)

(G3) the identity element from S(n), which is id, is an even permutation, hence it is the identity element in A(n) as well (G4) π is an even permutation $\implies \pi^{-1}$ is also even (G5) fails for $n \ge 4$ as $(1\ 2\ 3)(2\ 3\ 4) = (1\ 2)(3\ 4)$ while $(2\ 3\ 4)(1\ 2\ 3) = (1\ 3)(2\ 4)$

Examples: set theory

• All subsets of a set X with the operation of symmetric difference: $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

- (G1) $A, B \subset X \implies A \triangle B \subset X$.
- (G2) $(A\triangle B)\triangle C = A\triangle (B\triangle C)$ consists of those elements of X that belong to an odd number of sets A,B,C (either to just one of them or to all three)
- (G3) the identity element is the empty set \emptyset since
- $A \triangle \emptyset = \emptyset \triangle A = A$ for any set A
- (G4) the inverse of a set $A \subset X$ is A itself: $A \triangle A = \emptyset$ (G5) $A \triangle B = B \triangle A = (A \cup B) \setminus (A \cap B)$

Examples: logic

• Binary logic $\mathcal{L} = \{\text{"true"}, \text{"false"}\}\$ with the operation XOR (eXclusive OR): "x XOR y" means "either x or y (but not both)".

```
(G1) "true XOR false" = "false XOR true" = "true", "true XOR true" = "false XOR false" = "false" (G2) "(x XOR y) XOR z" = "x XOR (y XOR z)" (G3) the identity element is "false" (G4) the inverse of x \in \mathcal{L} is x itself (G5) "x XOR y" = "y XOR x"
```

More examples

• Any vector space *V* with addition.

Those axioms of the vector space that involve only addition are exactly axioms of the commutative group.

• Trivial group (G,*), where $G = \{e\}$ and e*e = e.

Verification of all axioms is straightforward.

• Positive real numbers with the operation x * y = 2xy.

(G1)
$$x, y > 0 \implies 2xy > 0$$

(G2) $(x * y) * z = x * (y * z) = 4xyz$
(G3) the identity element is $\frac{1}{2}$ as $x * e = x$ means $2ex = x$
(G4) the inverse of x is $\frac{1}{4x}$ as $x * y = \frac{1}{2}$ means $4xy = 1$
(G5) $x * y = y * x = 2xy$

Counterexamples

- ullet Real numbers ${\mathbb R}$ with multiplication.
- 0 has no inverse.
 - Positive integers with addition.

No identity element.

• Nonnegative integers with addition.

No inverse element for positive numbers.

• Odd permutations with multiplication.

The set is not closed under the operation.

• Integers with subtraction.

The operation is not associative: (a - b) - c = a - (b - c) only if c = 0.

• All subsets of a set X with the operation $A*B=A\cup B$. The operation is associative and commutative, the empty set is the identity element. However there is no inverse for a nonempty set.