MATH 433
Applied Algebra

## Lecture 22: <br> Transformation groups (continued). <br> Semigroups.

## Abstract groups

Definition. A group is a set $G$, together with a binary operation $*$, that satisfies the following axioms:
(G1: closure)
for all elements $g$ and $h$ of $G, g * h$ is an element of $G$;
(G2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in G$;
(G3: existence of identity)
there exists an element $e \in G$, called the identity (or unit) of $G$, such that $e * g=g * e=g$ for all $g \in G$;
(G4: existence of inverse) for every $g \in G$ there exists an element $h \in G$, called the inverse of $g$, such that $g * h=h * g=e$.
The group $(G, *)$ is said to be commutative (or Abelian) if it satisfies an additional axiom:
(G5: commutativity) $g * h=h * g$ for all $g, h \in G$.

## Transformation groups

Definition. A transformation group is a group of bijective transformations of a set $X$ with the operation of composition.

Examples.

- Symmetric group $S(n)$ : all permutations of $\{1,2, \ldots, n\}$.
- Alternating group $A(n)$ : even permutations of $\{1,2, \ldots, n\}$.
- Homeo( $\mathbb{R})$ : the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both $f$ and $f^{-1}$ are continuous (such functions are called homeomorphisms).
- Homeo ${ }^{+}(\mathbb{R})$ : the group of all increasing functions in $\operatorname{Homeo}(\mathbb{R})$ (i.e., those that preserve orientation of the real line).
- $\operatorname{Diff}(\mathbb{R})$ : the group of all invertible functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that both $f$ and $f^{-1}$ are continuously differentiable (such functions are called diffeomorphisms).


## Groups of symmetries

Definition. A transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a motion (or a rigid motion) if it preserves distances between points.

Theorem All motions of $\mathbb{R}^{n}$ form a transformation group. Any motion $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as $f(\mathbf{x})=A \mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and $A$ is an orthogonal matrix $\left(A^{T} A=A A^{T}=l\right)$.
Given a geometric figure $F \subset \mathbb{R}^{n}$, a symmetry of $F$ is a motion of $\mathbb{R}^{n}$ that preserves $F$. All symmetries of $F$ form a transformation group.

Example. - The dihedral group $D(n)$ is the group of symmetries of a regular $n$-gon. It consists of $2 n$ elements: $n$ reflections, $n-1$ rotations by angles $2 \pi k / n$, $k=1,2, \ldots, n-1$, and the identity function.


## Equlateral triangle

Any symmetry of a polygon maps vertices to vertices. Therefore it induces a permutation on the set of vertices. Moreover, the symmetry is uniquely recovered from the permutation.

In the case of the equilateral triangle, any permutation of vertices comes from a symmetry.


## Square

In the case of the square, not every permutation of vertices comes from a symmetry of the square. The reason is that a symmetry must map adjacent vertices to adjacent vertices.


## Regular tetrahedron

Any symmetry of a polyhedron maps vertices to vertices. In the case of the regular tetrahedron, any permutation of vertices comes from a symmetry.

## Rotations of the circle



Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ be the rotation of the circle $S^{1}$ by angle $\alpha \in \mathbb{R}$. All rotations $R_{\alpha}, \alpha \in \mathbb{R}$ form a transformation group. Namely, $R_{\alpha} R_{\beta}=R_{\alpha+\beta}, R_{\alpha}^{-1}=R_{-\alpha}$, and $R_{0}=\mathrm{id}$.
The group of rotations is part (a subgroup) of the group of all symmetries of the circle (the other symmetries are reflections).

## Matrix groups

A group is called linear if its elements are $n \times n$ matrices and the group operation is matrix multiplication.

- General linear group $G L(n, \mathbb{R})$ consists of all $n \times n$ matrices that are invertible (i.e., with nonzero determinant). The identity element is $I=\operatorname{diag}(1,1, \ldots, 1)$.
- Special linear group $S L(n, \mathbb{R})$ consists of all $n \times n$ matrices with determinant 1.
Closed under multiplication since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Also, $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$.
- Orthogonal group $O(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices $\left(A^{T}=A^{-1}\right)$.
- Special orthogonal group $S O(n, \mathbb{R})$ consists of all orthogonal $n \times n$ matrices with determinant 1 .

$$
S O(n, \mathbb{R})=O(n, \mathbb{R}) \cap S L(n, \mathbb{R})
$$

## Semigroups

Definition. A semigroup is a nonempty set $S$, together with a binary operation $*$, that satisfies the following axioms:
(S1: closure)
for all elements $g$ and $h$ of $S, g * h$ is an element of $S$;
(S2: associativity)
$(g * h) * k=g *(h * k)$ for all $g, h, k \in S$.
The semigroup $(S, *)$ is said to be a monoid if it satisfies an additional axiom:
(S3: existence of identity) there exists an element $e \in S$ such that $e * g=g * e=g$ for all $g \in S$.
Optional useful properties of semigroups:
(S4: cancellation) $g * h_{1}=g * h_{2}$ implies $h_{1}=h_{2}$ and $h_{1} * g=h_{2} * g$ implies $h_{1}=h_{2}$ for all $g, h_{1}, h_{2} \in S$.
(S5: commutativity) $g * h=h * g$ for all $g, h \in S$.

## Examples of semigroups

- Clearly, any group is also a semigroup and a monoid.
- Real numbers $\mathbb{R}$ with multiplication (commutative monoid).
- Positive integers with addition (commutative semigroup with cancellation).
- Positive integers with multiplication (commutative monoid with cancellation).
- $\mathbb{Z}_{n}$, congruence classes modulo $n$, with multiplication (commutative monoid).
- Given a nonempty set $X$, all functions $f: X \rightarrow X$ with composition (monoid).
- All injective functions $f: X \rightarrow X$ with composition (monoid with left cancellation: $g \circ f_{1}=g \circ f_{2} \Longrightarrow f_{1}=f_{2}$ ).
- All surjective functions $f: X \rightarrow X$ with composition (monoid with right cancellation: $f_{1} \circ g=f_{2} \circ g \Longrightarrow f_{1}=f_{2}$ ).


## Examples of semigroups

- All $n \times n$ matrices with multiplication (monoid).
- All $n \times n$ matrices with integer entries, with multiplication (monoid).
- Invertible $n \times n$ matrices, with multiplication (group).
- Invertible $n \times n$ matrices with integer entries, with multiplication (monoid with cancellation).
- All subsets of a set $X$ with the operation of union (commutative monoid).
- All subsets of a set $X$ with the operation of intersection (commutative monoid).
- Positive integers with the operation $a * b=\max (a, b)$ (commutative monoid).
- Positive integers with the operation $a * b=\min (a, b)$ (commutative semigroup).


## Examples of semigroups

- Given a finite alphabet $X$, the set $X^{*}$ of all finite words in $X$ with the operation of concatenation.
If $w_{1}=a_{1} a_{2} \ldots a_{n}$ and $w_{2}=b_{1} b_{2} \ldots b_{k}$, then $w_{1} w_{2}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{k}$. This is a monoid with cancellation. The identity element is the empty word.
- The set $S(X)$ of all automaton transformations over an alphabet $X$ with composition.
Any transducer automaton with the input/output alphabet $X$ generates a transformation $f: X^{*} \rightarrow X^{*}$ by the rule $f($ input-word $)=$ output-word. It turns out that the composition of two transformations generated by finite state automata can also be generated by a finite state automaton.


## Powers of an element in a semigroup

Suppose $S$ is a semigroup. Let us use multiplicative notation for the operation on $S$. The powers of an element $g \in S$ are defined inductively:

$$
g^{1}=g \text { and } g^{k+1}=g^{k} g \text { for every integer } k \geq 1 .
$$

Theorem Let $g$ be an element of a semigroup $G$ and $r, s \in \mathbb{Z}, r, s>0$. Then (i) $g^{r} g^{s}=g^{r+s}$, (ii) $\left(g^{r}\right)^{s}=g^{r s}$.
Proof: Both formulas are proved by induction on $s$.
(i) The base case $s=1$ follows from the definition: $g^{r} g^{1}=g^{r} g=g^{r+1}$. The induction step relies on associativity. Assume that $g^{r} g^{s}=g^{r+s}$ for some value of $s$ (and all $r$ ).
Then $g^{r} g^{s+1}=g^{r}\left(g^{s} g\right)=\left(g^{r} g^{s}\right) g=g^{r+s} g=g^{r+(s+1)}$.
(ii) The base case $s=1$ is trivial: $\left(g^{r}\right)^{1}=g^{r}=g^{r \cdot 1}$. The induction step relies on (i), which has already been proved. Assume that $\left(g^{r}\right)^{s}=g^{r s}$ for some value of $s$ and all $r$. Then $\left(g^{r}\right)^{s+1}=\left(g^{r}\right)^{s} g^{r}=g^{r s} g^{r}=g^{r s+r}=g^{r(s+1)}$.

Theorem Any finite semigroup with cancellation is, in fact, a group.
Lemma If $S$ is a finite semigroup with cancellation, then for any $s \in S$ there exists an integer $k \geq 2$ such that $s^{k}=s$.
Proof: Since $S$ is finite, the sequence $s, s^{2}, s^{3}, \ldots$ contains repetitions, i.e., $s^{k}=s^{m}$ for some $k>m \geq 1$. If $m=1$ then we are done. If $m>1$ then $s^{m-1} s^{k-m+1}=s^{m-1} s$, which implies $s^{k-m+1}=s$.

Proof of the theorem: Take any $s \in S$. By Lemma, we have $s^{k}=s$ for some $k \geq 2$. Then $e=s^{k-1}$ is the identity element. Indeed, for any $g \in S$ we have $s^{k} g=s g$ or, equivalently, $s(e g)=s g$. After cancellation, $e g=g$. Similarly, $g e=g$ for all $g \in S$. Finally, for any $g \in S$ there is $n \geq 2$ such that $g^{n}=g=g e$. Then $g^{n-1}=e$, which implies that $g^{n-2}=g^{-1}$.

