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Lecture 22:
Transformation groups (continued).

Semigroups.



Abstract groups

Definition. A group is a set G , together with a binary
operation ∗, that satisfies the following axioms:

(G1: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G3: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G4: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or Abelian) if
it satisfies an additional axiom:

(G5: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Transformation groups

Definition. A transformation group is a group of bijective
transformations of a set X with the operation of composition.

Examples.

• Symmetric group S(n): all permutations of {1, 2, . . . , n}.

• Alternating group A(n): even permutations of {1, 2, . . . , n}.

• Homeo(R): the group of all invertible functions f : R → R

such that both f and f −1 are continuous (such functions are
called homeomorphisms).

• Homeo+(R): the group of all increasing functions in
Homeo(R) (i.e., those that preserve orientation of the real
line).

• Diff(R): the group of all invertible functions f : R → R

such that both f and f −1 are continuously differentiable (such
functions are called diffeomorphisms).



Groups of symmetries

Definition. A transformation f : Rn → R
n is called a motion

(or a rigid motion) if it preserves distances between points.

Theorem All motions of Rn form a transformation group.
Any motion f : Rn → R

n can be represented as
f (x) = Ax + x0, where x0 ∈ R

n and A is an orthogonal
matrix (ATA = AAT = I ).

Given a geometric figure F ⊂ R
n, a symmetry of F is a

motion of Rn that preserves F . All symmetries of F form a
transformation group.

Example. • The dihedral group D(n) is the group of
symmetries of a regular n-gon. It consists of 2n elements:
n reflections, n−1 rotations by angles 2πk/n,
k = 1, 2, . . . , n−1, and the identity function.



Equlateral triangle

Any symmetry of a polygon maps vertices to

vertices. Therefore it induces a permutation on the
set of vertices. Moreover, the symmetry is uniquely
recovered from the permutation.

In the case of the equilateral triangle, any
permutation of vertices comes from a symmetry.



Square

In the case of the square, not every permutation
of vertices comes from a symmetry of the square.

The reason is that a symmetry must map adjacent
vertices to adjacent vertices.



Regular tetrahedron

Any symmetry of a polyhedron maps vertices to

vertices. In the case of the regular tetrahedron, any
permutation of vertices comes from a symmetry.



Rotations of the circle

α

Let Rα : S1 → S1 be the rotation of the circle S1 by angle
α ∈ R. All rotations Rα, α ∈ R form a transformation
group. Namely, RαRβ = Rα+β, R−1

α = R−α, and R0 = id.

The group of rotations is part (a subgroup) of the group of all
symmetries of the circle (the other symmetries are reflections).



Matrix groups

A group is called linear if its elements are n×n matrices and
the group operation is matrix multiplication.

• General linear group GL(n,R) consists of all n×n

matrices that are invertible (i.e., with nonzero determinant).

The identity element is I = diag(1, 1, . . . , 1).

• Special linear group SL(n,R) consists of all n×n

matrices with determinant 1.

Closed under multiplication since det(AB) = det(A) det(B).
Also, det(A−1) = (det(A))−1.

• Orthogonal group O(n,R) consists of all orthogonal
n×n matrices (AT = A−1).

• Special orthogonal group SO(n,R) consists of all
orthogonal n×n matrices with determinant 1.

SO(n,R) = O(n,R) ∩ SL(n,R).



Semigroups

Definition. A semigroup is a nonempty set S , together with
a binary operation ∗, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Optional useful properties of semigroups:

(S4: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S5: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Examples of semigroups

• Clearly, any group is also a semigroup and a monoid.

• Real numbers R with multiplication (commutative monoid).

• Positive integers with addition (commutative semigroup
with cancellation).

• Positive integers with multiplication (commutative monoid
with cancellation).

• Zn, congruence classes modulo n, with multiplication
(commutative monoid).

• Given a nonempty set X , all functions f : X → X with
composition (monoid).

• All injective functions f : X → X with composition
(monoid with left cancellation: g ◦ f1 = g ◦ f2 =⇒ f1 = f2).

• All surjective functions f : X → X with composition
(monoid with right cancellation: f1 ◦ g = f2 ◦ g =⇒ f1 = f2).



Examples of semigroups

• All n×n matrices with multiplication (monoid).

• All n×n matrices with integer entries, with multiplication
(monoid).

• Invertible n×n matrices, with multiplication (group).

• Invertible n×n matrices with integer entries, with
multiplication (monoid with cancellation).

• All subsets of a set X with the operation of union
(commutative monoid).

• All subsets of a set X with the operation of intersection
(commutative monoid).

• Positive integers with the operation a ∗ b = max(a, b)
(commutative monoid).

• Positive integers with the operation a ∗ b = min(a, b)
(commutative semigroup).



Examples of semigroups

• Given a finite alphabet X , the set X ∗ of all finite

words in X with the operation of concatenation.

If w1 = a1a2 . . . an and w2 = b1b2 . . . bk , then
w1w2 = a1a2 . . . anb1b2 . . . bk . This is a monoid with
cancellation. The identity element is the empty word.

• The set S(X ) of all automaton transformations

over an alphabet X with composition.

Any transducer automaton with the input/output alphabet X
generates a transformation f : X ∗ → X ∗ by the rule
f (input-word) = output-word. It turns out that the
composition of two transformations generated by finite state
automata can also be generated by a finite state automaton.



Powers of an element in a semigroup

Suppose S is a semigroup. Let us use multiplicative notation
for the operation on S . The powers of an element g ∈ S are
defined inductively:

g 1 = g and g k+1 = g kg for every integer k ≥ 1.

Theorem Let g be an element of a semigroup G and
r , s ∈ Z, r , s > 0. Then (i) g rg s = g r+s , (ii) (g r)s = g rs .

Proof: Both formulas are proved by induction on s.
(i) The base case s = 1 follows from the definition:
g rg 1 = g rg = g r+1. The induction step relies on associativity.
Assume that g rg s = g r+s for some value of s (and all r).
Then g rg s+1 = g r(g sg) = (g rg s)g = g r+sg = g r+(s+1).
(ii) The base case s = 1 is trivial: (g r)1 = g r = g r ·1. The
induction step relies on (i), which has already been proved.
Assume that (g r)s = g rs for some value of s and all r . Then
(g r)s+1 = (g r)sg r = g rsg r = g rs+r = g r(s+1).



Theorem Any finite semigroup with cancellation

is, in fact, a group.

Lemma If S is a finite semigroup with
cancellation, then for any s ∈ S there exists an

integer k ≥ 2 such that sk = s.

Proof: Since S is finite, the sequence s, s2, s3, . . . contains
repetitions, i.e., sk = sm for some k > m ≥ 1. If m = 1
then we are done. If m > 1 then sm−1sk−m+1 = sm−1s,
which implies sk−m+1 = s.

Proof of the theorem: Take any s ∈ S . By Lemma, we have
sk = s for some k ≥ 2. Then e = sk−1 is the identity
element. Indeed, for any g ∈ S we have skg = sg or,
equivalently, s(eg) = sg . After cancellation, eg = g .
Similarly, ge = g for all g ∈ S . Finally, for any g ∈ S there
is n ≥ 2 such that g n = g = ge. Then g n−1 = e, which
implies that g n−2 = g−1.


