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Lecture 24:
Rings and fields (continued).

Vector spaces over a field.



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an Abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(R1) for all x , y ∈ R , x + y is an element of R ;
(R2) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(R3) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(R4) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(R5) x + y = y + x for all x , y ∈ R ;
(R6) for all x , y ∈ R , xy is an element of R ;
(R7) (xy)z = x(yz) for all x , y , z ∈ R ;
(R8) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Basic properties of rings

Let R be a ring.

• The zero 0 ∈ R is unique.

• For any x ∈ R, the negative −x is unique.

• −(−x) = x for all x ∈ R.

• x0 = 0x = 0 for all x ∈ R.

• (−x)y = x(−y) = −xy for all x , y ∈ R.

• (−x)(−y) = xy for all x , y ∈ R.

• x(y − z) = xy − xz for all x , y , z ∈ R.

• (y − z)x = yx − zx for all x , y , z ∈ R.



Unity and units
Definition. A ring R is called a ring with unity if there
exists an identity element for multiplication (denoted 1).

Lemma If 1 = 0 then R is the trivial ring, R = {0}.

Proof. Let x ∈ R . Then x1 = x and x0 = 0. Hence x = 0.

Suppose R is a non-trivial ring with unity. An element x ∈ R

is called invertible (or a unit) if it has a multiplicative inverse
x−1, i.e., xx−1 = x−1x = 1. The set of all invertible elements
of the ring R is denoted R× or R∗.

Proposition 1 R× is a group under multiplication.

Sketch of the proof. The unity is invertible: 1−1 = 1. If x is
invertible then x−1 is also invertible: (x−1)−1 = x . If x and y

are invertible then so is xy : (xy )−1 = y−1x−1.

Proposition 2 Invertible elements cannot be divisors of zero.

Proof. Let a ∈ R× and x ∈ R . Then ax = 0 =⇒
a−1(ax) = a−10 =⇒ (a−1a)x = a−10 =⇒ x = 0. Similarly,
xa = 0 =⇒ x = 0.



From rings to fields

A ring R is called a domain if it has no divisors of zero, that
is, xy = 0 implies x = 0 or y = 0.

A ring R is called a ring with unity if there exists an identity
element for multiplication (called the unity and denoted 1).

A division ring (or skew field) is a nontrivial ring with unity
in which every nonzero element has a multiplicative inverse.

A ring R is called commutative if the multiplication is
commutative.

An integral domain is a nontrivial commutative ring with
unity and no divisors of zero.

A field is an integral domain in which every nonzero element
has a multiplicative inverse (equivalently, a commutative
division ring).

rings ⊃ domains ⊃ integral domains ⊃ fields
⊃ division rings ⊃



Characteristic of a field

A field F is said to be of nonzero characteristic if

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n summands

= 0 for some positive integer n.

The smallest integer with this property is called the
characteristic of F . Otherwise the field F has

characteristic 0.

The fields Q, R, and C have characteristic 0.
The field Zp (p prime) has characteristic p.

In general, any finite field has nonzero characteristic.
Any nonzero characteristic is prime since

(1 + · · ·+ 1
︸ ︷︷ ︸

n summands

)(1 + · · ·+ 1
︸ ︷︷ ︸

m summands

) = 1 + · · · + 1
︸ ︷︷ ︸

nm summands

.



Vector spaces over a field

Definition. Given a field F , a vector space V over F is an
additive abelian group endowed with a mixed operation
φ : F × V → V called scalar multiplication or scaling.

Elements of V and F are referred to respectively as vectors
and scalars. The scalar multiple φ(λ, v ) is denoted λv .

The scalar multiplication is to satisfy the following axioms:

(V1) for all v ∈ V and λ ∈ F , λv is an element of V ;
(V2) λ(v + w) = λv + λw for all v ,w ∈ V and λ ∈ F ;
(V3) (λ+ µ)v = λv + µv for all v ∈ V and λ, µ ∈ F ;
(V4) λ(µv ) = (λµ)v for all v ∈ V and λ, µ ∈ F ;
(V5) 1v = v for all v ∈ V .

(Almost) all linear algebra developed for vector spaces over R
can be generalized to vector spaces over an arbitrary field F .
This includes: linear independence, span, basis, dimension,
determinants, matrices, eigenvalues and eigenvectors.



Examples of vector spaces over a field F :

• The space F n of n-dimensional coordinate

vectors (x1, x2, . . . , xn) with coordinates in F .

• The space Mn,m(F ) of n×m matrices with

entries in F .

• The space F [X ] of polynomials
p(X ) = a0 + a1X + · · ·+ anX

n in variable X with

coefficients in F .

• Any field F ′ that is an extension of F (i.e.,

F ⊂ F ′ and the operations on F are restrictions of
the corresponding operations on F ′). In particular,
C is a vector space over R and over Q, R is a

vector space over Q.



Finite fields

Theorem 1 Any finite field F has nonzero characteristic.

Proof: Consider a sequence 1, 1+1, 1+1+1, . . . Since F is
finite, there are repetitions in this sequence. Clearly, the
difference of any two elements is another element of the
sequence. Hence the sequence contains 0 so that the
characteristic of F is nonzero.

Theorem 2 The number of elements in a finite field F is pk ,
where p is a prime number.

Sketch of the proof: Let p be the characteristic of F . By the
above, p > 0. Therefore p is a prime number. Let F ′ be the
set of all elements 1, 1+1, 1+1+1, . . . Clearly, F ′ consists of
p elements. One can show that F ′ is a subfield (canonically
identified with Zp). It follows that F has pk elements, where
k = dim F as a vector space over F ′.


