MATH 433
Applied Algebra

Lecture 24:
Rings and fields (continued).
Vector spaces over a field.



Rings

Definition. A ring is a set R, together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that

e R is an Abelian group under addition,

e R is a semigroup under multiplication,

e multiplication distributes over addition.

The complete list of axioms is as follows:

(R1) for all x,y € R, x+y is an element of R;

(R2) (x+y)+z=x+(y+2z) forall x,y,z€R;

(R3) there exists an element, denoted 0, in R such that
X+0=0+x=x forall xe€ R;

(R4) for every x € R there exists an element, denoted —x, in R
such that x4+ (—x) = (—x) +x=0;

(R5) x+y=y+x forall x,y €R;

(R6) for all x,y € R, xy is an element of R;

(R7) (xy)z = x(yz) forall x,y,z € R;

(R8) x(y+z) = xy+xz and (y+z)x = yx+zx forall x,y,z € R.



Basic properties of rings

Let R be a ring.

The zero 0 € R is unique.

For any x € R, the negative —x is unique.
—(—x) =x forall x € R.

x0=0x=0 forall x € R.

(—x)y = x(—y) = —xy forall x,y € R.
(—x)(—y) = xy for all x,y € R.

x(y —z)=xy —xz forall x,y,z€R.
(y —z)x =yx —zx forall x,y,z€ R.



Unity and units

Definition. A ring R is called a ring with unity if there
exists an identity element for multiplication (denoted 1).

Lemma If 1 =0 then R is the trivial ring, R = {0}.
Proof. Let x € R. Then x1 = x and x0 =0. Hence x =0.

Suppose R is a non-trivial ring with unity. An element x € R
is called invertible (or a unit) if it has a multiplicative inverse
x L e, xx 1 =x"1x=1. The set of all invertible elements

of the ring R is denoted R* or R*.

Proposition 1 R* is a group under multiplication.

Sketch of the proof. The unity is invertible: 17! =1. If x is

invertible then x~! is also invertible: (x™1)™' =x. If x and y

are invertible then so is xy: (xy)™! =y ix7.

Proposition 2 Invertible elements cannot be divisors of zero.
Proof. Let a€ R* and x € R. Then ax=0 =
allax)=a'0 = (ata)x=a'0 = x=0. Similarly,
xa=0 = x=0.



From rings to fields

A ring R is called a domain if it has no divisors of zero, that
is, xy =0 implies x=0 or y =0.

A ring R is called a ring with unity if there exists an identity
element for multiplication (called the unity and denoted 1).
A division ring (or skew field) is a nontrivial ring with unity
in which every nonzero element has a multiplicative inverse.

A ring R is called commutative if the multiplication is
commutative.

An integral domain is a nontrivial commutative ring with
unity and no divisors of zero.

A field is an integral domain in which every nonzero element
has a multiplicative inverse (equivalently, a commutative
division ring).
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Characteristic of a field

A field F is said to be of nonzero characteristic if
l1+14---+1=0 for some positive integer n.

n summands
The smallest integer with this property is called the
characteristic of F. Otherwise the field F has
characteristic 0.

The fields Q, R, and C have characteristic 0.
The field Z, (p prime) has characteristic p.
In general, any finite field has nonzero characteristic.
Any nonzero characteristic is prime since

Qe Dt ) =1+ 1,
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Vector spaces over a field

Definition. Given a field F, a vector space V over F is an
additive abelian group endowed with a mixed operation
¢ F xV — V called scalar multiplication or scaling.

Elements of V and F are referred to respectively as vectors
and scalars. The scalar multiple ¢(\, v) is denoted Av.

The scalar multiplication is to satisfy the following axioms:

(V1) forall ve V and A € F, Av is an element of V;
(V2) M(v+w)=Av+Aw forall v,we V and X €F;
(V3) A+ p)v=Av+puv forall veV and A\ pueF;
(V4) Muv) = (Ap)v forall veV and A\ peF;

(V5) lv=v forall veV.

(Almost) all linear algebra developed for vector spaces over R
can be generalized to vector spaces over an arbitrary field F.
This includes: linear independence, span, basis, dimension,
determinants, matrices, eigenvalues and eigenvectors.



Examples of vector spaces over a field F:

e The space F" of n-dimensional coordinate
vectors (xi, Xo, ..., X,) with coordinates in F.

e The space M, ,(F) of nxm matrices with
entries in F.

e The space F[X] of polynomials
p(X)=ay+aX+ -+ a,X" in variable X with
coefficients in F.

e Any field F’ that is an extension of F (i.e.,

F C F’ and the operations on F are restrictions of
the corresponding operations on F’). In particular,
C is a vector space over R and over Q, R is a
vector space over Q.



Finite fields

Theorem 1 Any finite field F has nonzero characteristic.

Proof: Consider a sequence 1,1+1,1+1+1,... Since F is
finite, there are repetitions in this sequence. Clearly, the
difference of any two elements is another element of the
sequence. Hence the sequence contains 0 so that the
characteristic of F is nonzero.

Theorem 2 The number of elements in a finite field F is p*,
where p is a prime number.

Sketch of the proof: Let p be the characteristic of F. By the
above, p > 0. Therefore p is a prime number. Let F’ be the
set of all elements 1,1+1,14+1+1,... Clearly, F’ consists of
p elements. One can show that F’ is a subfield (canonically
identified with ZP). It follows that F has p* elements, where
k = dim F as a vector space over F'.



