MATH 433
Applied Algebra

Lecture 27:
Subgroups.
Cyclic groups.



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G. Notation: H < G.

Proposition If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G;

(ii) for any g € H the inverse g~ taken in H is the same as
the inverse taken in G.

Proof. Let ec be the identity element of G and ey be the
identity element of H. Then egcey = ey in G. Further,
eney = ey in H (but also in G). Hence egey = eyey in G.
By right cancellation in G, ec = ep.

Now take any g € H. Let g’ be the inverse of g in G and g”
be the inverse of g in H. Then g'g = e in G and

g"'g =ey=ec in H (butalsoin G). Hence g'g = g’"g in
G. By right cancellation in G, g’ = g”.



Examples of subgroups: e (Z,+) is a subgroup of (R,+).
e (Q\ {0}, x) is a subgroup of (R\ {0}, x).

e The alternating group A(n) is a subgroup of the symmetric
group S(n).

e If V is a subspace of a vector space V/, then it is also a
subgroup of the additive group V.

e Any group G is a subgroup of itself.

e If e is the identity element of a group G, then {e} is the
trivial subgroup of G.

Counterexamples: o (R\ {0}, x) is not a subgroup of
(R, +) since the operations do not agree.

e (Z,,+) is not a subgroup of (Z,+) since Z, is not a
subset of Z (although every element of Z, is a subset of Z).
e (Z \ {0}, x) is not a subgroup of (R\ {0}, x) since

(Z \ {0}, x) is not a group (it is a subsemigroup).



Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G.
Then the following statements are equivalent:

(i) H is a subgroup of G;

(ii) H contains e and is closed under the operation and under
taking the inverse, thatis, g,he H =— gh€ H and
geEH = gleH,

(iii) H is nonempty and g, h€ H = gh™! € H.

Proof. (i) == (ii) If H is a subgroup of G, then

g,he H — gh € H since the operations agree and H
satisfies the closure axiom. Further, e € H since e is also the
identity element in Hand g€ H = g '€ H sinceg™tis
also the inverse of g in H.

(i) = (i) By construction, H is a subgroup of G as soon as

it is a group. (ii) implies the closure axiom, existence of the
identity and the inverse. Associativity is inherited from G.



Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G.
Then the following statements are equivalent:

(i) H is a subgroup of G;

(ii) H contains e and is closed under the operation and under
taking the inverse, thatis, g,he H — ghe H and
geEH = gleH,

(iii) H is nonempty and g,he H = gh™! € H.

Proof. (ii) = (iii) is obvious.

(iii)) = (ii) Takeany he H. Then e=hh"' € H and
h™! = eh™' € H. Further, for any g € H we have
gh=g(h™)teH.



Intersection of subgroups

Theorem 1 Let H, and H, be subgroups of a
group G. Then the intersection H; N H, is also a
subgroup of G.

Proof: The identity element e of G belongs to every
subgroup. Hence e € H; N H,. In particular, the intersection
is nonempty. Now for any elements g and h of the group G,

g.he HHNH, — g,he H; and g,he H,
— gh_lé H; and gh_l eEH, — gh_l € Hy N H,.

Theorem 2 Let H,, « € A be a nonempty
collection of subgroups of the same group G
(where the index set A may be infinite). Then
the intersection [, H, is also a subgroup of G.



Generators of a group

Let S be a set (or a list) of some elements of a group G.
The group generated by S, denoted (S), is the smallest
subgroup of G that contains the set S. The elements of the
set S are called generators of the group (S).

Theorem 1 The group (S) is well defined. Indeed, it is the
intersection of all subgroups of G that contain S.

Note that we have at least one subgroup of G containing S,
namely, G itself. If it is the only one, i.e., (S) = G, then S'is
called a generating set for the group G.

Theorem 2 If S is nonempty, then the group (S) consists of
all elements of the form g1g> ... gk, where each g; is either a
generator s € S or the inverse s~! of a generator.

Example. Suppose S = {a,b,c}. Let g =abc'a and
h = bcba=. Then gh = abc tabcba=!, hg = bcb*c!a,
g?=abc'a’bcta, gt =atch a7l



Cyclic groups

A cyclic group is a group generated by a single element.
Cyclic group: (g) = {g" : n € Z} (in multiplicative notation)
or (g) ={ng :neZ} (in additive notation).

Any cyclic group is Abelian since g"g™ = g"t™ = gMg" for
all myneZ.

If g has finite order n, then the cyclic group (g) consists of n
elements g,g2, ..., g" L g"=e.

If g is of infinite order, then (g) is infinite.

Examples of cyclic groups: 7, 37, Zs, Gz, S(2), A(3).
Examples of noncyclic groups: any uncountable group, any

non-Abelian group, Gg with multiplication, Q with addition,
Q\ {0} with multiplication.



Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is
cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G. Let g be the generator of G, G = {g": n € Z}.
Denote by k the smallest positive integer such that gk ¢ H
(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = (g*).

Since gk € H, it follows that (g*) C H. Let us show that

H C (gX). Take any h€ H. Then h= g" for some n € Z.
We have n = kq + r, where g is the quotient and r is the
remainder after division of n by k (0 < r < k). It follows that
g =g" " =g"gk = h(gk)~9 € H. By the choice of k,
we obtain that r =0. Thus h=g" = gki = (g")7 € (g¥).



Examples

e Integers Z with addition.

The group is cyclic, Z = (1) = (—1). The proper cyclic
subgroups of Z are: the trivial subgroup {0} = (0) and, for
any integer m > 2, the group mZ = (m) = (—m). These
are all subgroups of Z.

e 7s with addition.

The group is cyclic, Zs = ([1]) = ([-1]) = ([2]) = ([-2]).
The only proper subgroup is the trivial subgroup {[0]} = ([0]).

e G7 with multiplication.

The group is cyclic, G; = ([3]7). Indeed, [3]* = [9] = [2],
[3]3 (6], [31* = [4], [31° = [5], and [3]° = [1]. Also,

= ([3]7') = ([5]). Proper subgroups are {[1],[2], [4]}.
{[1] [6]}, and {[1]}.



