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Lecture 27:
Subgroups.

Cyclic groups.



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G . Notation: H ≤ G .

Proposition If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G ;
(ii) for any g ∈ H the inverse g−1 taken in H is the same as
the inverse taken in G .

Proof. Let eG be the identity element of G and eH be the
identity element of H. Then eGeH = eH in G . Further,
eHeH = eH in H (but also in G ). Hence eGeH = eHeH in G .
By right cancellation in G , eG = eH .

Now take any g ∈ H. Let g ′ be the inverse of g in G and g ′′

be the inverse of g in H. Then g ′g = eG in G and
g ′′g = eH = eG in H (but also in G ). Hence g ′g = g ′′g in
G . By right cancellation in G , g ′ = g ′′.



Examples of subgroups: • (Z,+) is a subgroup of (R,+).

• (Q \ {0},×) is a subgroup of (R \ {0},×).

• The alternating group A(n) is a subgroup of the symmetric
group S(n).

• If V0 is a subspace of a vector space V , then it is also a
subgroup of the additive group V .

• Any group G is a subgroup of itself.

• If e is the identity element of a group G , then {e} is the
trivial subgroup of G .

Counterexamples: • (R \ {0},×) is not a subgroup of
(R,+) since the operations do not agree.

• (Zn,+) is not a subgroup of (Z,+) since Zn is not a
subset of Z (although every element of Zn is a subset of Z).

• (Z \ {0},×) is not a subgroup of (R \ {0},×) since
(Z \ {0},×) is not a group (it is a subsemigroup).



Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G .
Then the following statements are equivalent:
(i) H is a subgroup of G ;
(ii) H contains e and is closed under the operation and under
taking the inverse, that is, g , h ∈ H =⇒ gh ∈ H and
g ∈ H =⇒ g−1 ∈ H;
(iii) H is nonempty and g , h ∈ H =⇒ gh−1 ∈ H.

Proof. (i) =⇒ (ii) If H is a subgroup of G , then
g , h ∈ H =⇒ gh ∈ H since the operations agree and H

satisfies the closure axiom. Further, e ∈ H since e is also the
identity element in H and g ∈ H =⇒ g−1 ∈ H since g−1 is
also the inverse of g in H.

(ii) =⇒ (i) By construction, H is a subgroup of G as soon as
it is a group. (ii) implies the closure axiom, existence of the
identity and the inverse. Associativity is inherited from G .



Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G .
Then the following statements are equivalent:
(i) H is a subgroup of G ;
(ii) H contains e and is closed under the operation and under
taking the inverse, that is, g , h ∈ H =⇒ gh ∈ H and
g ∈ H =⇒ g−1 ∈ H;
(iii) H is nonempty and g , h ∈ H =⇒ gh−1 ∈ H.

Proof. (ii) =⇒ (iii) is obvious.

(iii) =⇒ (ii) Take any h ∈ H. Then e = hh−1 ∈ H and
h−1 = eh−1 ∈ H. Further, for any g ∈ H we have
gh = g(h−1)−1 ∈ H.



Intersection of subgroups

Theorem 1 Let H1 and H2 be subgroups of a
group G . Then the intersection H1 ∩ H2 is also a

subgroup of G .

Proof: The identity element e of G belongs to every
subgroup. Hence e ∈ H1 ∩ H2. In particular, the intersection
is nonempty. Now for any elements g and h of the group G ,
g , h ∈ H1 ∩ H2 =⇒ g , h ∈ H1 and g , h ∈ H2

=⇒ gh−1 ∈ H1 and gh−1 ∈ H2 =⇒ gh−1 ∈ H1 ∩ H2.

Theorem 2 Let Hα, α ∈ A be a nonempty
collection of subgroups of the same group G

(where the index set A may be infinite). Then
the intersection

⋂
α
Hα is also a subgroup of G .



Generators of a group

Let S be a set (or a list) of some elements of a group G .
The group generated by S , denoted 〈S〉, is the smallest
subgroup of G that contains the set S . The elements of the
set S are called generators of the group 〈S〉.

Theorem 1 The group 〈S〉 is well defined. Indeed, it is the
intersection of all subgroups of G that contain S .

Note that we have at least one subgroup of G containing S ,
namely, G itself. If it is the only one, i.e., 〈S〉 = G , then S is
called a generating set for the group G .

Theorem 2 If S is nonempty, then the group 〈S〉 consists of
all elements of the form g1g2 . . . gk , where each gi is either a
generator s ∈ S or the inverse s−1 of a generator.

Example. Suppose S = {a, b, c}. Let g = abc−1a and
h = bcba−1. Then gh = abc−1abcba−1, hg = bcb2c−1a,
g 2 = abc−1a2bc−1a, g−1 = a−1cb−1a−1.



Cyclic groups

A cyclic group is a group generated by a single element.

Cyclic group: 〈g〉 = {g n : n ∈ Z} (in multiplicative notation)
or 〈g〉 = {ng : n ∈ Z} (in additive notation).

Any cyclic group is Abelian since g ngm = g n+m = gmg n for
all m, n ∈ Z.

If g has finite order n, then the cyclic group 〈g〉 consists of n
elements g , g 2

, . . . , g n−1
, g n = e.

If g is of infinite order, then 〈g〉 is infinite.

Examples of cyclic groups: Z, 3Z, Z5, G7, S(2), A(3).

Examples of noncyclic groups: any uncountable group, any
non-Abelian group, G8 with multiplication, Q with addition,
Q \ {0} with multiplication.



Subgroups of a cyclic group

Theorem Every subgroup of a cyclic group is

cyclic as well.

Proof: Suppose that G is a cyclic group and H is a subgroup
of G . Let g be the generator of G , G = {g n : n ∈ Z}.
Denote by k the smallest positive integer such that g k ∈ H

(if there is no such integer then H = {e}, which is a cyclic
group). We are going to show that H = 〈g k〉.

Since g k ∈ H, it follows that 〈g k〉 ⊂ H. Let us show that
H ⊂ 〈g k〉. Take any h ∈ H. Then h = g n for some n ∈ Z.
We have n = kq + r , where q is the quotient and r is the
remainder after division of n by k (0 ≤ r < k). It follows that
g r = g n−kq = g ng−kq = h(g k)−q ∈ H. By the choice of k,
we obtain that r = 0. Thus h = g n = g kq = (g k)q ∈ 〈g k〉.



Examples

• Integers Z with addition.

The group is cyclic, Z = 〈1〉 = 〈−1〉. The proper cyclic
subgroups of Z are: the trivial subgroup {0} = 〈0〉 and, for
any integer m ≥ 2, the group mZ = 〈m〉 = 〈−m〉. These
are all subgroups of Z.

• Z5 with addition.

The group is cyclic, Z5 = 〈[1]〉 = 〈[−1]〉 = 〈[2]〉 = 〈[−2]〉.
The only proper subgroup is the trivial subgroup {[0]} = 〈[0]〉.

• G7 with multiplication.

The group is cyclic, G7 = 〈[3]7〉. Indeed, [3]2 = [9] = [2],
[3]3 = [6], [3]4 = [4], [3]5 = [5], and [3]6 = [1]. Also,
G7 = 〈[3]−1〉 = 〈[5]〉. Proper subgroups are {[1], [2], [4]},
{[1], [6]}, and {[1]}.


