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Lecture 28:
Cosets.

Lagrange’s Theorem.



Cosets

Definition. Let H be a subgroup of a group G . A coset
(or left coset) of the subgroup H in G is a set of the form
aH = {ah : h ∈ H}, where a ∈ G . Similarly, a right coset of H
in G is a set of the form Ha = {ha : h ∈ H}, where a ∈ G .

Theorem Let H be a subgroup of G and define a relation R on G

by aRb ⇐⇒ a ∈ bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b−1a ∈ H.
Reflexivity: aRa since a−1a = e ∈ H.
Symmetry: aRb =⇒ b−1a ∈ H =⇒ a−1b = (b−1a)−1 ∈ H

=⇒ bRa. Transitivity: aRb and bRc =⇒ b−1a, c−1b ∈ H

=⇒ c−1a = (c−1b)(b−1a) ∈ H =⇒ aRc .

Corollary The cosets of the subgroup H in G form a partition of
the set G .

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G . Clearly, the equivalence class of g is gH.



Examples of cosets

• G = Z, H = nZ.
The coset of a ∈ Z is [a]n = a + nZ, the congruence class of
a modulo n.

• G = R
3, H is the plane x + 2y − z = 0.

H is a subgroup of G since it is a subspace. The coset of
(x0, y0, z0) ∈ R

3 is the plane x + 2y − z = x0 + 2y0 − z0
parallel to H.

• G = S(n), H = A(n).
There are only 2 cosets, the set of even permutations A(n)
and the set of odd permutations S(n) \ A(n).

• G is any group, H = G .
There is only one coset, G .

• G is any group, H = {e}.
Each element of G forms a separate coset.



Lagrange’s Theorem

The number of elements in a group G is called the order of G
and denoted o(G ). Given a subgroup H of G , the number of
cosets of H in G is called the index of H in G and denoted
[G : H].

Theorem (Lagrange) If H is a subgroup of a finite group
G , then o(G ) = [G : H] · o(H). In particular, the order of H
divides the order of G .

Proof: For any a ∈ G define a function f : H → aH by
f (h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f (h1) = f (h2) =⇒ ah1 = ah2 =⇒ h1 = h2.
Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G ,
the theorem follows.



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order of
any element g ∈ G divides the order of G .

Proof: The order of g ∈ G is the same as the order of the
cyclic group 〈g〉, which is a subgroup of G .

Corollary 2 If G is a finite group, then g o(G) = e

for all g ∈ G .

Proof: We have g n = e whenever n is a multiple of o(g).
By Corollary 1, o(G ) is a multiple of o(g) for all g ∈ G .



Corollaries of Lagrange’s Theorem

Corollary 3 (Fermat’s Little Theorem) If p is a prime
number then ap−1 ≡ 1 mod p for any integer a that is not a
multiple of p.

Proof: ap−1 ≡ 1 mod p means that [a]p−1
p = [1]p.

a is not a multiple of p means that [a]p is in Gp, the
multiplicative group of invertible congruence classes modulo p.
It remains to recall that o(Gp) = p − 1 and apply Corollary 2.

Corollary 4 (Euler’s Theorem) If n is a positive integer
then aφ(n) ≡ 1 mod n for any integer a coprime with n.

Proof: aφ(n) ≡ 1 mod n means that [a]
φ(n)
n = [1]n.

a is coprime with n means that the congruence class [a]n is in
Gn. It remains to recall that o(Gn) = φ(n) and apply
Corollary 2.



Corollary 5 Any group G of prime order p is cyclic.

Proof: Take any element g ∈ G different from e. Then
o(g) 6= 1, hence o(g) = p, and this is also the order of the
cyclic subgroup 〈g〉. It follows that 〈g〉 = G .

Corollary 6 Any group G of prime order has only
two subgroups: the trivial subgroup and G itself.

Proof: If H is a subgroup of G then o(H) divides o(G ).
Since o(G ) is prime, we have o(H) = 1 or o(H) = o(G ).
In the former case, H is trivial. In the latter case, H = G .

Corollary 7 The alternating group A(n), n ≥ 2,

consists of n!/2 elements.

Proof: Indeed, A(n) is a subgroup of index 2 in the
symmetric group S(n). The latter consists of n! elements.



Theorem Let G be a cyclic group of finite order n. Then for
any divisor d of n there exists a unique subgroup of G of order
d , which is also cyclic.

Lemma Suppose that an element g has finite order m. Then
for any integer ℓ 6= 0 the power g ℓ has order m/gcd(ℓ,m).

Proof: Let N be a positive integer. Then (g ℓ)N = g ℓN .
Hence (g ℓ)N = e if and only if ℓN is divisible by m. The
smallest number N with this property is m/gcd(ℓ,m).

Proof of the theorem: We have G = 〈g〉, where o(g) = n.
Take any divisor d of n. By Lemma, o(g n/d) = d . Therefore
a cyclic group H = 〈g n/d〉 has order d .

Now assume H ′ is another subgroup of G of order d . The
group H ′ is cyclic since G is cyclic. We have H ′ = 〈g k〉 for
some k 6= 0. By Lemma, o(g k) = n/gcd(k, n). On the
other hand, o(g k) = d . It follows that gcd(k, n) = n/d . We
know that gcd(k, n) = ak + bn for some a, b ∈ Z. Then
g n/d = g ak+bn = g kag nb = (g k)a(g n)b = (g k)a ∈ 〈g k〉 = H ′.
Hence H=〈g n/d〉⊂H ′. But o(H)=o(H ′)=d . Thus H ′=H.


