MATH 433 Applied Algebra Lecture 28: Cosets. Lagrange's Theorem.

Cosets

Definition. Let H be a subgroup of a group G. A **coset** (or **left coset**) of the subgroup H in G is a set of the form $aH = \{ah : h \in H\}$, where $a \in G$. Similarly, a **right coset** of H in G is a set of the form $Ha = \{ha : h \in H\}$, where $a \in G$.

Theorem Let *H* be a subgroup of *G* and define a relation *R* on *G* by $aRb \iff a \in bH$. Then *R* is an equivalence relation.

Proof: We have *aRb* if and only if $b^{-1}a \in H$. **Reflexivity**: *aRa* since $a^{-1}a = e \in H$. **Symmetry**: *aRb* $\implies b^{-1}a \in H \implies a^{-1}b = (b^{-1}a)^{-1} \in H$ $\implies bRa$. **Transitivity**: *aRb* and *bRc* $\implies b^{-1}a, c^{-1}b \in H$ $\implies c^{-1}a = (c^{-1}b)(b^{-1}a) \in H \implies aRc$.

Corollary The cosets of the subgroup H in G form a partition of the set G.

Proof: Since R is an equivalence relation, its equivalence classes partition the set G. Clearly, the equivalence class of g is gH.

Examples of cosets

• $G = \mathbb{Z}, H = n\mathbb{Z}.$

The coset of $a \in \mathbb{Z}$ is $[a]_n = a + n\mathbb{Z}$, the congruence class of a modulo n.

• $G = \mathbb{R}^3$, H is the plane x + 2y - z = 0. H is a subgroup of G since it is a subspace. The coset of $(x_0, y_0, z_0) \in \mathbb{R}^3$ is the plane $x + 2y - z = x_0 + 2y_0 - z_0$ parallel to H.

•
$$G = S(n)$$
, $H = A(n)$.

There are only 2 cosets, the set of even permutations A(n) and the set of odd permutations $S(n) \setminus A(n)$.

• G is any group, H = G. There is only one coset, G.

• G is any group, $H = \{e\}$. Each element of G forms a separate coset.

Lagrange's Theorem

The number of elements in a group G is called the **order** of G and denoted o(G). Given a subgroup H of G, the number of cosets of H in G is called the **index** of H in G and denoted [G : H].

Theorem (Lagrange) If *H* is a subgroup of a finite group *G*, then $o(G) = [G : H] \cdot o(H)$. In particular, the order of *H* divides the order of *G*.

Proof: For any $a \in G$ define a function $f : H \to aH$ by f(h) = ah. By definition of aH, this function is surjective. Also, it is injective due to the left cancellation property: $f(h_1) = f(h_2) \implies ah_1 = ah_2 \implies h_1 = h_2$. Therefore f is bijective. It follows that the number of elements in the coset aH is the same as the order of the subgroup H. Since the cosets of H in G partition the set G, the theorem follows.

Corollaries of Lagrange's Theorem

Corollary 1 If G is a finite group, then the order of any element $g \in G$ divides the order of G.

Proof: The order of $g \in G$ is the same as the order of the cyclic group $\langle g \rangle$, which is a subgroup of G.

Corollary 2 If G is a finite group, then $g^{o(G)} = e$ for all $g \in G$.

Proof: We have $g^n = e$ whenever n is a multiple of o(g). By Corollary 1, o(G) is a multiple of o(g) for all $g \in G$.

Corollaries of Lagrange's Theorem

Corollary 3 (Fermat's Little Theorem) If p is a prime number then $a^{p-1} \equiv 1 \mod p$ for any integer a that is not a multiple of p.

Proof: $a^{p-1} \equiv 1 \mod p$ means that $[a]_p^{p-1} = [1]_p$. *a* is not a multiple of *p* means that $[a]_p$ is in G_p , the multiplicative group of invertible congruence classes modulo *p*. It remains to recall that $o(G_p) = p - 1$ and apply Corollary 2.

Corollary 4 (Euler's Theorem) If *n* is a positive integer then $a^{\phi(n)} \equiv 1 \mod n$ for any integer *a* coprime with *n*.

Proof: $a^{\phi(n)} \equiv 1 \mod n$ means that $[a]_n^{\phi(n)} = [1]_n$. *a* is coprime with *n* means that the congruence class $[a]_n$ is in G_n . It remains to recall that $o(G_n) = \phi(n)$ and apply Corollary 2.

Corollary 5 Any group *G* of prime order *p* is cyclic.

Proof: Take any element $g \in G$ different from e. Then $o(g) \neq 1$, hence o(g) = p, and this is also the order of the cyclic subgroup $\langle g \rangle$. It follows that $\langle g \rangle = G$.

Corollary 6 Any group G of prime order has only two subgroups: the trivial subgroup and G itself.

Proof: If *H* is a subgroup of *G* then o(H) divides o(G). Since o(G) is prime, we have o(H) = 1 or o(H) = o(G). In the former case, *H* is trivial. In the latter case, H = G.

Corollary 7 The alternating group A(n), $n \ge 2$, consists of n!/2 elements.

Proof: Indeed, A(n) is a subgroup of index 2 in the symmetric group S(n). The latter consists of n! elements.

Theorem Let G be a cyclic group of finite order n. Then for any divisor d of n there exists a unique subgroup of G of order d, which is also cyclic.

Lemma Suppose that an element g has finite order m. Then for any integer $\ell \neq 0$ the power g^{ℓ} has order $m/\gcd(\ell, m)$.

Proof: Let N be a positive integer. Then $(g^{\ell})^N = g^{\ell N}$. Hence $(g^{\ell})^N = e$ if and only if ℓN is divisible by m. The smallest number N with this property is $m/\gcd(\ell, m)$.

Proof of the theorem: We have $G = \langle g \rangle$, where o(g) = n. Take any divisor d of n. By Lemma, $o(g^{n/d}) = d$. Therefore a cyclic group $H = \langle g^{n/d} \rangle$ has order d.

Now assume H' is another subgroup of G of order d. The group H' is cyclic since G is cyclic. We have $H' = \langle g^k \rangle$ for some $k \neq 0$. By Lemma, $o(g^k) = n/\gcd(k, n)$. On the other hand, $o(g^k) = d$. It follows that $\gcd(k, n) = n/d$. We know that $\gcd(k, n) = ak + bn$ for some $a, b \in \mathbb{Z}$. Then $g^{n/d} = g^{ak+bn} = g^{ka}g^{nb} = (g^k)^a(g^n)^b = (g^k)^a \in \langle g^k \rangle = H'$. Hence $H = \langle g^{n/d} \rangle \subset H'$. But o(H) = o(H') = d. Thus H' = H.