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Lecture 29:
Direct product of groups.

Quotient group.



Direct product of binary structures

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Proposition 1 The operation • is fully (resp. uniquely, well)
defined if and only if both ∗ and ⋆ are.

Proposition 2 The operation • is associative (resp.
commutative) if and only if both ∗ and ⋆ are.

Proposition 3 A pair (eG , eH) is the identity element in
G × H if and only if eG is the identity element in G and eH is
the identity element in H.

Proposition 4 (g ′, h′) = (g , h)−1 in G × H if and only if
g ′ = g−1 in G and h′ = h−1 in H.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G × H

is the set of all ordered pairs (g , h) such that g ∈ G and
h ∈ H. Suppose ∗ is a binary operation on G and ⋆ is a
binary operation on H. Then we can define a binary operation
• on G × H by

(g1, h1) • (g2, h2) = (g1 ∗ g2, h1 ⋆ h2).

Theorem The set G × H with the operation • is a group if
and only if both (G , ∗) and (H, ⋆) are groups.

The group G × H is called the direct product of the groups
G and H. Usually the same notation (multiplicative or
additive) is used for all three groups:

(g1, h1)(g2, h2) = (g1g2, h1h2) or
(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2).

Similarly, we can define the direct product G1 × G2 × · · · × Gn

of any finite collection of groups G1,G2, . . . ,Gn.



Example. Z2 × Z3 (with addition in Z2 and Z3).

The group consists of 6 elements. It is Abelian since Z2 and
Z3 are both Abelian. The identity element is ([0]2, [0]3).
Let g = ([1]2, [1]3). Then 2g = g + g = ([0]2, [2]3),
3g = ([1]2, [0]3), 4g = ([0]2, [1]3), 5g = ([1]2, [2]3), and
6g = ([0]2, [0]3). It follows that Z2 × Z3 is a cyclic group,
Z2 × Z3 = 〈g〉.

Theorem If g has finite order in a group G and h has finite
order in a group H, then (g , h) has finite order in G × H

equal to lcm
(

o(g), o(h)
)

. [Hint: (g , h)n = (g n, hn).]

Theorem The direct product of nontrivial cyclic groups is
cyclic if and only if they are all finite and their orders are
pairwise coprime.

For example, groups Z3 × Z5, Z4 × Z15, and Z2 × Z5 × Z7

are cyclic while groups Z4 × Z6, Z2 × Z2 × Z3, Z3 × Z, and
Z× Z are not.



Quotient space

Let X be a nonempty set and ∼ be an equivalence relation on
X . Given an element x ∈ X , the equivalence class of x ,
denoted [x ]∼ or simply [x ], is the set of all elements of X that
are equivalent (i.e., related by ∼) to x :

[x ]∼ = {y ∈ X | y ∼ x}.

Theorem Equivalence classes of the relation ∼ form a
partition of the set X .

The set of all equivalence classes of ∼ is denoted X/∼ and
called the quotient space (or factor space) of X by the
relation ∼.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the quotient space X/∼.



Examples of quotient spaces

• X = Z, x ∼ y if and only if x ≡ y mod n.

Equivalence class of an integer m is the congruence class
modulo n, [m]∼ = [m]n = m + nZ. The quotient space Z/∼
is Zn.

• X = G , a group; x ∼ y if and only if x ∈ yH ,

where H is a subgroup.

Equivalence class of an element g ∈ G is the coset of the
subgroup H, [g ]∼ = gH. The quotient space G/∼ is the set
of all cosets of H in G . In this example, the quotient space is
usually denoted G/H.

Remark. The first example is a particular case of the second,
when G = Z and H = nZ. Hence Zn = Z/nZ.



Quotient group

Let G be a nonempty set with a binary operation ∗. Given
an equivalence relation ∼ on G , we say that the relation ∼ is
compatible with the operation ∗ if for any g1, g2, h1, h2 ∈ G ,

g1 ∼ g2 and h1 ∼ h2 =⇒ g1 ∗ h1 ∼ g2 ∗ h2.

If this is the case, we can define an operation on the quotient
space G/∼ by [g ] ⋆ [h] = [g ∗ h] for all g , h ∈ G .
Compatibility is required so that the operation ⋆ is defined
uniquely: if [g ′] = [g ] and [h′] = [h] then [g ′ ∗ h′] = [g ∗ h].

If the operation ∗ is associative (resp. commutative), then so
is ⋆. If e is the identity element for ∗, then its equivalence
class [e] is the identity element for ⋆. If h = g−1 in (G , ∗),
then [h] = [g ]−1 in (G/∼, ⋆).

Thus, if (G , ∗) is a group then (G/∼, ⋆) is also a group
called the quotient group (or factor group). Moreover,
if the group (G , ∗) is Abelian then so is (G/∼, ⋆).



Question. When is an equivalence relation ∼ on a group G

compatible with the operation?

Let G be a group and assume that an equivalence relation ∼
on G is compatible with the operation (so that the factor
space G/∼ is also the quotient group). For simplicity, let us
use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a
subgroup of G .

Proof. Let H = [e]∼ be the equivalence class of the identity
element e. We need to show that (i) e ∈ H, (ii) h1, h2 ∈ H

=⇒ h1h2 ∈ H, and (iii) h ∈ H =⇒ h−1 ∈ H.

By reflexivity, e ∼ e. Hence e ∈ H. Further, if h1, h2 ∈ H,
then h1 ∼ e and h2 ∼ e. By compatibility, h1h2 ∼ ee = e

so that h1h2 ∈ H. Next, if h ∈ H then h ∼ e. Also,
h−1 ∼ h−1. By compatibility, hh−1 ∼ eh−1, that is, e ∼ h−1.
By symmetry, h−1 ∼ e so that h−1 ∈ H.



Lemma 2 Each equivalence class is a left coset of the
subgroup H = [e]∼.

Proof. We need to prove that [g ]∼ = gH for all g ∈ G . We
are going to show that gH ⊂ [g ]∼ and [g ]∼ ⊂ gH.

Suppose a ∈ gH, that is, a = gh for some h ∈ H. Then
g ∼ g and h ∼ e, which implies that gh ∼ ge = g . Hence
a ∈ [g ]∼. Conversely, suppose a ∈ [g ]∼. We have
a = ea = (gg−1)a = g(g−1a). Since g−1 ∼ g−1 and a ∼ g ,
it follows that g−1a ∼ g−1g = e. Hence g−1a ∈ H so that
a = g(g−1a) ∈ gH.

Lemma 3 Each equivalence class is a right coset of the
subgroup H = [e]∼.

Proof. Analogous to the proof of Lemma 2.

Definition. A subgroup H of a group G is called normal if
gH = Hg for all g ∈ G , that is, each left coset of H is also a
right coset. Notation: H ⊳ G or H E G .



Quotient group

Question. When is an equivalence relation ∼ on

a group G compatible with the operation?

Theorem Assume that the quotient space G/∼ is
also the quotient group. Then

(i) H = [e]∼, the equivalence class of the identity
element, is a subgroup of G ,
(ii) [g ]∼ = gH for all g ∈ G ,

(iii) G/∼ = G/H ,
(iv) the subgroup H is normal, which means that

gH = Hg for all g ∈ G .

Theorem If H is a normal subgroup of a group G ,
then G/H is indeed the quotient group.


