MATH 433

Applied Algebra

Lecture 34:

Zeros of polynomials (continued). Greatest common divisor of polynomials.

Zeros of polynomials

Definition. An element $\alpha \in R$ of a ring R is called a **zero** (or **root**) of a polynomial $f \in R[x]$ if $f(\alpha) = 0$.

Theorem Let \mathbb{F} be a field. Then $\alpha \in \mathbb{F}$ is a zero of $f \in \mathbb{F}[x]$ if and only if the polynomial f(x) is divisible by $x - \alpha$. *Idea of the proof:* The remainder after division of f(x) by $x - \alpha$ is $f(\alpha)$.

Problem. Find the remainder after division of $f(x) = x^{100}$ by $g(x) = x^2 + x - 2$.

We have $x^{100}=(x^2+x-2)q(x)+r(x)$, where r(x)=ax+b for some $a,b\in\mathbb{R}$. The polynomial g has zeros 1 and -2. Evaluating both sides at x=1 and x=-2, we obtain f(1)=r(1) and f(-2)=r(-2). This gives rise to a system of linear equations: a+b=1, $-2a+b=2^{100}$. It has a unique solution: $a=(1-2^{100})/3$, $b=(2^{100}+2)/3$.

Rational roots

Theorem Let $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$ be a polynomial with integer coefficients and $c_n, c_0 \neq 0$. Assume that f has a rational root $\alpha = p/q$, where the fraction is in lowest terms. Then p divides c_0 and q divides c_n .

Proof: By assumption,

$$c_n\left(\frac{p}{q}\right)^n+c_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+c_1\frac{p}{q}+c_0=0.$$

Multiplying both sides of this equality by q^n , we obtain

$$c_n p^n + c_{n-1} p^{n-1} q + \cdots + c_1 p q^{n-1} + c_0 q^n = 0.$$

It follows that c_0q^n is divisible by p while c_np^n is divisible by q. Since the fraction p/q is in lowest terms, we have $\gcd(p,q)=1$. This implies that, in fact, c_0 is divisible by p and c_n is divisible by q.

Corollary If $c_n = 1$ then any rational root of the polynomial f is, in fact, an integer.

Example. $f(x) = x^3 + 6x^2 + 11x + 6$.

Since all coefficients are integers and the leading coefficient is 1, all rational roots of f (if any) are integers. Moreover, the only possible integer roots of f are divisors of the constant term: ± 1 , ± 2 , ± 3 , ± 6 . Notice that there are no positive roots as all coefficients are positive. We obtain that f(-1) = 0, f(-2) = 0, and f(-3) = 0. First we divide f(x) by x + 1: $x^3 + 6x^2 + 11x + 6 = (x + 1)(x^2 + 5x + 6).$

Then we divide
$$x^2 + 5x + 6$$
 by $x + 2$:

$$x^2 + 5x + 6 = (x + 2)(x + 3)$$
.

$$x^2 + 5x + 0 = (x + 2)(x + 3)$$

Thus
$$f(x) = (x+1)(x+2)(x+3)$$
.

Greatest common divisor of polynomials

Definition. Given non-zero polynomials $f,g \in \mathbb{F}[x]$, a **greatest common divisor** $\gcd(f,g)$ is a polynomial over the field \mathbb{F} such that **(i)** $\gcd(f,g)$ divides f and g, and **(ii)** if any $p \in \mathbb{F}[x]$ divides both f and g, then it divides $\gcd(f,g)$ as well.

Theorem (Bezout) The polynomial gcd(f,g) exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as uf + vg, where $u, v \in \mathbb{F}[x]$.

Theorem The polynomial gcd(f,g) exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as uf + vg, where $u, v \in \mathbb{F}[x]$.

Proof: Let S denote the set of all polynomials of the form uf + vg, where $u, v \in \mathbb{F}[x]$. The set S contains non-zero polynomials, say, f and g. Let d(x) be any such polynomial of the least possible degree. It is easy to show that the remainder after division of any polynomial $h \in S$ by d belongs to S as well. By the choice of d, that remainder must be zero. Hence d divides every polynomial in S. In particular, d is a common divisor of f and g. Further, if any $p(x) \in \mathbb{F}[x]$ divides both f and g, then it also divides every element of S. In particular, it divides d. Thus $d = \gcd(f, g)$.

Now assume d_1 is another greatest common divisor of f and g. By definition, d_1 divides d and d divides d_1 . This is only possible if d and d_1 are scalar multiples of each other.