MATH 433
Applied Algebra

Lecture 34:
 Zeros of polynomials (continued).
 Greatest common divisor of polynomials.

Zeros of polynomials

Definition. An element $\alpha \in R$ of a ring R is called a zero (or root) of a polynomial $f \in R[x]$ if $f(\alpha)=0$.

Theorem Let \mathbb{F} be a field. Then $\alpha \in \mathbb{F}$ is a zero of $f \in \mathbb{F}[x]$ if and only if the polynomial $f(x)$ is divisible by $x-\alpha$. Idea of the proof: The remainder after division of $f(x)$ by $x-\alpha$ is $f(\alpha)$.

Problem. Find the remainder after division of $f(x)=x^{100}$ by $g(x)=x^{2}+x-2$.
We have $x^{100}=\left(x^{2}+x-2\right) q(x)+r(x)$, where $r(x)=a x+b$ for some $a, b \in \mathbb{R}$. The polynomial g has zeros 1 and -2 . Evaluating both sides at $x=1$ and $x=-2$, we obtain $f(1)=r(1)$ and $f(-2)=r(-2)$. This gives rise to a system of linear equations: $a+b=1,-2 a+b=2^{100}$. It has a unique solution: $a=\left(1-2^{100}\right) / 3, b=\left(2^{100}+2\right) / 3$.

Rational roots

Theorem Let $f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ be a polynomial with integer coefficients and $c_{n}, c_{0} \neq 0$. Assume that f has a rational root $\alpha=p / q$, where the fraction is in lowest terms. Then p divides c_{0} and q divides c_{n}.
Proof: By assumption,

$$
c_{n}\left(\frac{p}{q}\right)^{n}+c_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+c_{1} \frac{p}{q}+c_{0}=0 .
$$

Multiplying both sides of this equality by q^{n}, we obtain

$$
c_{n} p^{n}+c_{n-1} p^{n-1} q+\cdots+c_{1} p q^{n-1}+c_{0} q^{n}=0 .
$$

It follows that $c_{0} q^{n}$ is divisible by p while $c_{n} p^{n}$ is divisible by q. Since the fraction p / q is in lowest terms, we have $\operatorname{gcd}(p, q)=1$. This implies that, in fact, c_{0} is divisible by p and c_{n} is divisible by q.
Corollary If $c_{n}=1$ then any rational root of the polynomial f is, in fact, an integer.

Example. $f(x)=x^{3}+6 x^{2}+11 x+6$.
Since all coefficients are integers and the leading coefficient is 1 , all rational roots of f (if any) are integers. Moreover, the only possible integer roots of f are divisors of the constant term: $\pm 1, \pm 2, \pm 3, \pm 6$. Notice that there are no positive roots as all coefficients are positive. We obtain that $f(-1)=0, f(-2)=0$, and $f(-3)=0$. First we divide $f(x)$ by $x+1$:

$$
x^{3}+6 x^{2}+11 x+6=(x+1)\left(x^{2}+5 x+6\right)
$$

Then we divide $x^{2}+5 x+6$ by $x+2$:

$$
x^{2}+5 x+6=(x+2)(x+3) .
$$

Thus $f(x)=(x+1)(x+2)(x+3)$.

Greatest common divisor of polynomials

Definition. Given non-zero polynomials $f, g \in \mathbb{F}[x]$,
a greatest common divisor $\operatorname{gcd}(f, g)$ is a polynomial over the field \mathbb{F} such that (i) $\operatorname{gcd}(f, g)$ divides f and g, and (ii) if any $p \in \mathbb{F}[x]$ divides both f and g, then it divides $\operatorname{gcd}(f, g)$ as well.

Theorem (Bezout) The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Theorem The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Proof: Let S denote the set of all polynomials of the form $u f+v g$, where $u, v \in \mathbb{F}[x]$. The set S contains non-zero polynomials, say, f and g. Let $d(x)$ be any such polynomial of the least possible degree. It is easy to show that the remainder after division of any polynomial $h \in S$ by d belongs to S as well. By the choice of d, that remainder must be zero. Hence d divides every polynomial in S. In particular, d is a common divisor of f and g. Further, if any $p(x) \in \mathbb{F}[x]$ divides both f and g, then it also divides every element of S. In particular, it divides d. Thus $d=\operatorname{gcd}(f, g)$.
Now assume d_{1} is another greatest common divisor of f and g. By definition, d_{1} divides d and d divides d_{1}. This is only possible if d and d_{1} are scalar multiples of each other.

