MATH 433
 Applied Algebra

Lecture 35:
Euclidean algorithm for polynomials. Factorisation of polynomials.

Greatest common divisor of polynomials

Definition. Given non-zero polynomials $f, g \in \mathbb{F}[x]$,
a greatest common divisor $\operatorname{gcd}(f, g)$ is a polynomial over the field \mathbb{F} such that (i) $\operatorname{gcd}(f, g)$ divides f and g, and (ii) if any $p \in \mathbb{F}[x]$ divides both f and g, then it divides $\operatorname{gcd}(f, g)$ as well.

Theorem (Bezout) The polynomial $\operatorname{gcd}(f, g)$ exists and is unique up to a scalar multiple. Moreover, it is a non-zero polynomial of the least degree that can be represented as $u f+v g$, where $u, v \in \mathbb{F}[x]$.

Euclidean algorithm for polynomials

Lemma 1 If a polynomial g divides a polynomial f then $\operatorname{gcd}(f, g)=g$.

Lemma 2 If g does not divide f and r is the remainder of f by g, then $\operatorname{gcd}(f, g)=\operatorname{gcd}(g, r)$.

Theorem For any non-zero polynomials
$f, g \in \mathbb{F}[x]$ there exists a sequence of polynomials $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{F}[x]$ such that $r_{1}=f, r_{2}=g, r_{i}$ is the remainder of r_{i-2} by r_{i-1} for $3 \leq i \leq k$, and r_{k} divides r_{k-1}. Then $\operatorname{gcd}(f, g)=r_{k}$.

Problem. Find all common roots of real polynomials $p(x)=x^{4}+2 x^{3}-x^{2}-2 x+1$ and $q(x)=x^{4}+x^{3}+x-1$.

Common roots of p and q are exactly roots of their greatest common divisor $\operatorname{gcd}(p, q)$. We can find $\operatorname{gcd}(p, q)$ using the Euclidean algorithm.
First we divide p by q : $x^{4}+2 x^{3}-x^{2}-2 x+1=$
$=\left(x^{4}+x^{3}+x-1\right)(1)+x^{3}-x^{2}-3 x+2$.
Next we divide q by the remainder $r_{1}(x)=x^{3}-x^{2}-3 x+2$:
$x^{4}+x^{3}+x-1=\left(x^{3}-x^{2}-3 x+2\right)(x+2)+5 x^{2}+5 x-5$.
Next we divide r_{1} by the remainder $r_{2}(x)=5 x^{2}+5 x-5$:
$x^{3}-x^{2}-3 x+2=\left(5 x^{2}+5 x-5\right)\left(\frac{1}{5} x-\frac{2}{5}\right)$.
Since r_{2} divides r_{1}, it follows that

$$
\operatorname{gcd}(p, q)=\operatorname{gcd}\left(q, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=r_{2} .
$$

The polynomial $r_{2}(x)=5 x^{2}+5 x-5$ has roots $(-1-\sqrt{5}) / 2$ and $(-1+\sqrt{5}) / 2$.

Irreducible polynomials

Definition. A non-constant polynomial $f \in \mathbb{F}[x]$ over a field \mathbb{F} is said to be irreducible over \mathbb{F} if it cannot be written as $f=g h$, where $g, h \in \mathbb{F}[x]$, and $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.

Irreducible polynomials are for multiplication of polynomials what prime numbers are for multiplication of integers.

If an irreducible polynomial f is divisible by another polynomial g, then g is either of degree zero or a scalar multiple of f.

Unique Factorisation Theorem

Theorem Any polynomial $f \in \mathbb{F}[x]$ of positive degree admits a factorisation $f=p_{1} p_{2} \ldots p_{k}$ into irreducible factors over \mathbb{F}. This factorisation is unique up to rearranging the factors and multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong induction on $\operatorname{deg}(f)$. It is based on a simple fact: if $p_{1} p_{2} \ldots p_{s}$ is an irreducible factorisation of f and $q_{1} q_{2} \ldots q_{t}$ is an irreducible factorisation of g, then $p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{t}$ is an irreducible factorisation of $f g$.

The uniqueness is proved by (normal) induction on the number of irreducible factors. It is based on a (not so simple) fact: if an irreducible polynomial p divides a product of irreducible polynomials $q_{1} q_{2} \ldots q_{t}$ then one of the factors q_{1}, \ldots, q_{t} is a scalar multiple of p.

Some facts and examples

- Any polynomial of degree 1 is irreducible.
- A polynomial $p(x) \in \mathbb{F}[x]$ is divisible by a polynomial of degree 1 if and only if it has a root. Indeed, if $p(\alpha)=0$ for some $\alpha \in \mathbb{F}$, then $p(x)$ is divisible by $x-\alpha$. Conversely, if $p(x)$ is divisible by $a x+b$ for some $a, b \in \mathbb{F}, a \neq 0$, then p has a root $-b / a$.
- A polynomial of degree 2 or 3 is irreducible if and only if it has no roots.
If such a polynomial splits into a product of two non-constant polynomials, then at least one of the factors is of degree 1.
- Polynomial $p(x)=\left(x^{2}+1\right)^{2}$ has no real roots, yet it is not irreducible over \mathbb{R}.
- Polynomial $p(x)=x^{3}+x^{2}-5 x+2$ is irreducible over \mathbb{Q}.
We only need to check that $p(x)$ has no rational roots. Since all coefficients are integers and the leading coefficient is 1 , possible rational roots are integer divisors of the constant term: ± 1 and ± 2. We check that $p(1)=-1, p(-1)=7$, $p(2)=4$ and $p(-2)=8$.
- If a polynomial $p(x) \in \mathbb{R}[x]$ is irreducible over \mathbb{R}, then $\operatorname{deg}(p)=1$ or 2 .
Assume $\operatorname{deg}(p)>1$. Then p has a complex root $\alpha=a+b i$ that is not real: $b \neq 0$. Complex conjugacy $\overline{r+s i}=r-s i$ commutes with arithmetic operations and preserves real numbers. Therefore $p(\bar{\alpha})=\overline{p(\alpha)}=0$ so that $\bar{\alpha}$ is another root of p. It follows that $p(x)$ is divisible by $(x-\alpha)(x-\bar{\alpha})$ $=x^{2}-(\alpha+\bar{\alpha}) x+\alpha \bar{\alpha}=x^{2}-2 a x+a^{2}+b^{2}$, which is a real polynomial. Then $p(x)$ must be a scalar multiple of it.

Factorisation over \mathbb{C} and \mathbb{R}

Clearly, any polynomial $f \in \mathbb{F}[x]$ of degree 1 is irreducible over \mathbb{F}. Depending on the field \mathbb{F}, there may exist other irreducible polynomials as well.

Fundamental Theorem of Algebra Any nonconstant polynomial over the field \mathbb{C} has a root.

Corollary 1 The only irreducible polynomials over the field \mathbb{C} of complex numbers are linear polynomials. Equivalently, any polynomial $f \in \mathbb{C}[x]$ of a positive degree n can be factorised as $f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$, where $c, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and $c \neq 0$.

Corollary 2 The only irreducible polynomials over the field \mathbb{R} of real numbers are linear polynomials and quadratic polynomials without real roots.

Examples of factorisation

- $f(x)=x^{4}-1$ over \mathbb{R}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$.
The polynomial $x^{2}+1$ is irreducible over \mathbb{R}.
- $f(x)=x^{4}-1$ over \mathbb{C}.
$f(x)=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)$
$=(x-1)(x+1)(x-i)(x+i)$.
- $f(x)=x^{4}-1$ over \mathbb{Z}_{5}.

It follows from Fermat's Little Theorem that any non-zero element of the field \mathbb{Z}_{5} is a root of the polynomial f. Hence f has 4 distinct roots. By the Unique Factorisation Theorem,

$$
\begin{aligned}
f(x) & =(x-1)(x-2)(x-3)(x-4) \\
& =(x-1)(x+1)(x-2)(x+2) .
\end{aligned}
$$

- $f(x)=x^{4}-1 \quad$ over \mathbb{Z}_{7}.

Note that the polynomial $x^{4}-1$ can be considered over any field. Moreover, the expansion $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)$ $=(x-1)(x+1)\left(x^{2}+1\right)$ holds over any field. It depends on the field whether the polynomial $g(x)=x^{2}+1$ is irreducible. Over the field \mathbb{Z}_{7}, we have $g(0)=1, g(\pm 1)=2, g(\pm 2)=5$ and $g(\pm 3)=10=3$. Hence g has no roots. For polynomials of degree 2 or 3 , this implies irreducibility.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{17}.

The polynomial $x^{2}+1$ has roots ± 4. It follows that $f(x)=(x-1)(x+1)\left(x^{2}+1\right)=(x-1)(x+1)(x-4)(x+4)$.

- $f(x)=x^{4}-1$ over \mathbb{Z}_{2}.

For this field, we have $1+1=0$ so that $-1=1$. Hence $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2}$ $=(x-1)^{4}$.

