MATH 433
Applied Algebra
Lecture 36:
Review for Exam 3.

## Topics for Exam 3

- Order of an element in a group
- Subgroups
- Cyclic groups
- Cosets
- Lagrange's Theorem
- Isomorphism of groups
- The ISBN code
- Binary codes, error detection and error correction
- Linear codes, generator matrix
- Coset leaders, coset decoding table
- Parity-check matrix, syndromes
- Division of polynomials
- Greatest common divisor of polynomials
- Factorisation of polynomials


## Sample problems

Problem 1. Suppose $\pi, \sigma \in S(5)$ are permutations of order 3. What are possible values for the order of the permutation $\pi \sigma$.

Problem 2. Suppose $H$ and $K$ are subgroups of a group $G$. Is the union $H \cup K$ necessarily a subgroup of $G$ ? Is the intersection $H \cap K$ necessarily a subgroup of $G$ ?

Problem 3. Prove that the group $(\mathbb{Q} \backslash\{0\}, \times$ ) is not cyclic.

## Sample problems

Problem 4. Suppose $G$ is a group of order 125.
Show that $G$ contains an element of order 5 .

Problem 5. The group $\left(G_{15}, \times\right)$ has subgroups of what orders?

Problem 6. Determine which of the following groups of order 6 are isomorphic and which are not: $\mathbb{Z}_{6}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}, S(3)$, and $D(3)$.

## Sample problems

Problem 7. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{7}$ be the coding function that sends each three-character word $a b c$ in the alphabet $\mathbf{B}=\{0,1\}$ to the codeword abcabcy, where $y$ is the inverted parity bit of the word $a b c$ (i.e., $y=0$ if $a b c$ contains an odd number of 1 's and $y=1$ otherwise). How many errors will this code detect? correct? Is this code linear?

Problem 8. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{6}$ be a linear coding function defined by the generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

Suppose that a message encoded by this function is received with errors as 101101010101011111 . Correct errors and decode the received message.

## Sample problems

Problem 9. Find a greatest common divisor of polynomials $p(x)=x^{4}-2 x^{3}+5 x^{2}-4 x+4$ and $q(x)=2 x^{3}-3 x^{2}+5 x-2$ over $\mathbb{R}$.

Problem 10. Factorise a polynomial $p(x)=x^{3}-3 x^{2}+3 x-2$ into irreducible factors over the field $\mathbb{Z}_{7}$.

Problem 1. Suppose $\pi, \sigma \in S(5)$ are permutations of order 3. What are possible values for the order of permutation $\pi \sigma$.

The order of a permutation equals the least common multiple of the cycle lengths in its cycle decomposition. Hence it equals 3 only if the cycles are of length 1 or 3 (at least one cycle of length 3 is required). For permutations $\pi, \sigma \in S(5)$, this implies that both are cycles of length 3 .
Up to relabeling of the set $\{1,2,3,4,5\}$, we can assume that $\pi=\left(\begin{array}{ll}1 & 2\end{array}\right)$. As for $\sigma$, there are several possible choices:
$\sigma_{1}=\left(\begin{array}{ll}1 & 4\end{array}\right), \sigma_{2}=\left(\begin{array}{ll}1 & 2\end{array}\right), \sigma_{3}=\left(\begin{array}{lll}2 & 1 & 4\end{array}\right), \sigma_{4}=\left(\begin{array}{ll}1 & 2\end{array}\right)$, and $\sigma_{5}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$. Namely, $\sigma=\sigma_{1}$ if there is only one element that both $\pi$ and $\sigma$ move, $\sigma=\sigma_{2}$ or $\sigma_{3}$ if there are two such elements, and $\sigma=\sigma_{4}$ or $\sigma_{5}$ if $\pi$ and $\sigma$ move the same three elements.
We have $\pi \sigma_{1}=(14523), \pi \sigma_{2}=(13)(24), \pi \sigma_{3}=(143)$, $\pi \sigma_{4}=(132)$, and $\pi \sigma_{5}=\mathrm{id}$. Thus the order of $\pi \sigma$ can be $1,2,3$ or 5 .

Problem 2. Suppose $H$ and $K$ are subgroups of a group $G$. Is the union $H \cup K$ necessarily a subgroup of $G$ ? Is the intersection $H \cap K$ necessarily a subgroup of $G$ ?

The union $H \cup K$ is a subgroup of $G$ only if $H \subset K$ or $K \subset H$ (so that $H \cup K$ coincides with one of the subgroups $H$ and $K$ ).
Otherwise $H \cup K$ is not closed under the group operation. Indeed, if neither of the subgroups contains the other, we can find an element $h \in H \backslash K$ and an element $k \in K \backslash H$. Let $g=h k$. Then $g \notin H$ as otherwise $k=h^{-1} g \in H$, a contradiction. Similarly, $g \notin K$ as otherwise $h=g k^{-1} \in K$, another contradiction. Thus $h, k \in H \cup K$ while $h k \notin H \cup K$.

The intersection $H \cap K$ of two subgroups is always a subgroup (see lecture notes and the textbook).

Problem 3. Prove that the group $(\mathbb{Q} \backslash\{0\}, \times$ ) is not cyclic.

Take any non-zero rational number $r$. It can be represented as a reduced fraction: $r=\frac{m}{n}$, where $m$ and $n$ are non-zero integers and $\operatorname{gcd}(m, n)=1$.
The cyclic group $\langle r\rangle$ consists of fractions $\frac{m}{n}, \frac{m^{2}}{n^{2}}, \frac{m^{3}}{n^{3}}, \ldots$,
fractions $\frac{n}{m}, \frac{n^{2}}{m^{2}}, \frac{n^{3}}{m^{3}}, \ldots$, and 1. Note that all fractions are reduced.

The numbers $m$ and $n$ can have only finitely many prime divisors. Since there are infinitely many prime numbers, we can find a prime number $p$ that divides neither $m$ nor $n$. It is easy to see that $p \notin\langle r\rangle$. Thus $\langle r\rangle \neq \mathbb{Q} \backslash\{0\}$.

Problem 4. Suppose $G$ is a group of order 125 . Show that $G$ contains an element of order 5 .

It follows from Lagrange's Theorem that the order of any element of the group $G$ divides 125 . Hence the only orders we can expect are $1,5,25$, and 125 .
Let $g$ be any element of $G$ different from the identity element.
Then the order of $g$ is 5,25 or 125 .
If $o(g)=5$ then we are done.
If $o(g)=25$ then the element $g^{5}$ has order 5 .
If $o(g)=125$ then the element $g^{25}$ has order 5 .
Remarks. - In general, if the order of $g$ is $n$, then the order of $g^{k}$ is $\frac{n}{\operatorname{gcd}(k, n)}$.

- A theorem of Cauchy states that if the order of a finite group is divisible by a prime number $p$ then the group contains an element of order $p$.

Problem 5. The group $\left(G_{15}, \times\right)$ has subgroups of what orders?
$G_{15}$ is the multiplicative group of invertible congruence classes modulo 15. It has 8 elements:

$$
[1],[2],[4],[7],[8],[11],[13],[14] .
$$

By Lagrange's Theorem, a subgroup of $G_{15}$ can be of order 1 , 2,4 or 8 . First we find the cyclic subgroups of $G_{15}$. These are $\{[1]\},\{[1],[4]\},\{[1],[11]\}=\{[1],[-4]\},\{[1],[14]\}=\{[1],[-1]\}$, $\{[1],[2],[4],[8]\}$, and $\{[1],[4],[7],[13]\}=\{[1],[-2],[4],[-8]\}$. Hence we have cyclic subgroups of orders 1,2 and 4. Also, the entire group $G_{15}$ is a subgroup of order 8 .

Remark. The only other subgroup of $G_{15}$ is a non-cyclic group $\{[1],[4],[11],[14]\}=\{[1],[4],[-4],[-1]\}$.

Problem 6. Determine which of the following groups of order 6 are isomorphic and which are not: $\mathbb{Z}_{6}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}, S(3)$, and $D(3)$.
$\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is an additive group, where the addition is defined by $(g, h)+\left(g^{\prime}, h^{\prime}\right)=\left(g+g^{\prime}, h+h^{\prime}\right)$. It is easy to check that the element $\left([1]_{3},[1]_{2}\right)$ has order 6 . Therefore it generates the entire group so that $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is cyclic. Hence it is isomorphic to $\mathbb{Z}_{6}$ as another cyclic group of order 6 .
$D(3)$ is a dihedral group, the group of symmetries of an equilateral triangle. Any symmetry permutes vertices of the triangle. Once we label the vertices as 1,2 , and 3 , each symmetry from $D(3)$ is assigned a permutation from the symmetric group $S(3)$. This correspondence is actually an isomorphism.
Neither of the groups $\mathbb{Z}_{6}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is isomorphic to $S(3)$ or $D(3)$ since the first two groups are commutative while the other two are not.

Problem 7. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{7}$ be the coding function that sends each three-character word $a b c$ in the alphabet $\mathbf{B}=\{0,1\}$ to the codeword abcabcy, where $y$ is the inverted parity bit of the word $a b c$ (i.e., $y=0$ if $a b c$ contains an odd number of 1 's and $y=1$ otherwise). How many errors will this code detect? correct? Is this code linear?

First we list all 8 codewords for the given code:

$$
\begin{array}{llll}
0000001, & 0010010, & 0100100, & 0110111, \\
1001000, & 1011011, & 1101101, & 1111110 .
\end{array}
$$

Then we determine the minimum distance between distinct codewords. By inspection, it is 3. Therefore the code allows to detect 2 errors and to correct 1 error.

For any linear code, the set of codewords is a subspace of some $\mathbf{B}^{n}$. As a consequence, it contains the zero word. Since the zero word is not a codeword for the function $f$, this code is not linear.

Problem 8. Let $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{6}$ be a linear coding function defined by the generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

Suppose that a message encoded by this function is received with errors as 101101010101011111 . Correct errors and decode the received message.

The coding function is given by $f(w)=w G$, where $G$ is the generator matrix and $w$ is regarded as a row vector. The 8 codewords are linear combinations of rows of the generator matrix:

$$
\begin{array}{ll}
000000, & 001011, \\
100101, & 101110, \\
110011, & 011101 \\
\hline
\end{array}
$$

Every received word is corrected to the closest codeword. The corrected message is 100101011101011101 . Since the code is systematic, decoding consists of truncating the codewords to 3 digits: 100011011 .

Problem 9. Find a greatest common divisor of polynomials $p(x)=x^{4}-2 x^{3}+5 x^{2}-4 x+4$ and $q(x)=2 x^{3}-3 x^{2}+5 x-2$ over $\mathbb{R}$.
$\operatorname{gcd}(p, q)$ can be found using the Euclidean algorithm. First we divide $p$ by $q: x^{4}-2 x^{3}+5 x^{2}-4 x+4=$ $=\left(2 x^{3}-3 x^{2}+5 x-2\right)\left(\frac{1}{2} x-\frac{1}{4}\right)+\frac{7}{4} x^{2}-\frac{7}{4} x+\frac{7}{2}$.
Hence $\operatorname{gcd}(p, q)=\operatorname{gcd}(q, r)$, where $r(x)=\frac{7}{4} x^{2}-\frac{7}{4} x+\frac{7}{2}$ is the remainder of $p$ by $q$. It is convenient to replace the polynomial $r$ by its scalar multiple $\tilde{r}(x)=\frac{4}{7} r(x)=x^{2}-x+2$. Clearly, $\operatorname{gcd}(q, r)=\operatorname{gcd}(q, \tilde{r})$.

Next we divide $q$ by $\tilde{r}$ :
$2 x^{3}-3 x^{2}+5 x-2=\left(x^{2}-x+2\right)(2 x-1)$.
Since $\tilde{r}$ divides $q$, it follows that $\operatorname{gcd}(q, \tilde{r})=\tilde{r}$.
Finally, $\operatorname{gcd}(p, q)=x^{2}-x+2$.

Problem 10. Factorise a polynomial $p(x)=x^{3}-3 x^{2}+3 x-2$ into irreducible factors over the field $\mathbb{Z}_{7}$.

A quadratic or cubic polynomial is irreducible if and only if it has no roots. Indeed, if such a polynomial splits into a product of two non-constant polynomials, then at least one of the factors is linear. This implies that the original polynomial has a root.

Let us look for the roots of $p(x): \quad p(0)=-2, \quad p(1)=-1$, $p(2)=0$. Hence $p(x)$ is divisible by $x-2$ (over any field):

$$
x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right)
$$

Now we look for roots of the polynomial $q(x)=x^{2}-x+1$. Note that values 0 and 1 can be skipped this time. We obtain $q(2)=3, q(3)=7 \equiv 0 \bmod 7$. Hence $q(x)$ is divisible by $x-3$ over $\mathbb{Z}_{7}: x^{2}-x+1=(x-3)(x+2)$.
Thus $x^{3}-3 x^{2}+3 x-2=(x-2)(x-3)(x+2)$ over the field $\mathbb{Z}_{7}$.

