MATH 433 Applied Algebra

Lecture 2: Euclidean algorithm.

Division of integer numbers

Let *a* and *b* be integers and a > 0. Suppose that b = aq + r for some integers *q* and *r* such that $0 \le r < a$. Then *r* is the **remainder** and *q* is the **quotient** of *b* by *a*.

Theorem 1 Let *a* and *b* be integers and a > 0. Then the remainder and the quotient of *b* by *a* are well-defined.

Division of integer numbers

Theorem 2 Let *a* and *b* be integers and a > 0. Then the remainder and the quotient of *b* by *a* are uniquely determined.

Proof: Suppose that $b = aq_1 + r_1$ and $b = aq_2 + r_2$, where q_1, r_1, q_2, r_2 are integers and $0 \le r_1, r_2 < a$. We need to show that $q_1 = q_2$ and $r_1 = r_2$.

We have $aq_1 + r_1 = aq_2 + r_2$, which implies that $r_1 - r_2 = aq_2 - aq_1 = a(q_2 - q_1)$. Adding inequalities $0 \le r_1 < a$ and $-a < -r_2 \le 0$, we obtain $-a < r_1 - r_2 < a$. Consequently, $-1 < (r_1 - r_2)/a < 1$. On the other hand, $(r_1 - r_2)/a = q_2 - q_1$ is an integer. Therefore $(r_1 - r_2)/a = q_2 - q_1 = 0$ so that $q_1 = q_2$ and $r_1 = r_2$.

Greatest common divisor

Given two natural numbers a and b, the **greatest** common divisor gcd(a, b) of a and b is the largest natural number that divides both a and b.

Lemma 1 If a divides b then gcd(a, b) = a.

Lemma 2 If $a \nmid b$ and r is the remainder of b by a, then gcd(a, b) = gcd(r, a).

Proof: We have b = aq + r, where q is an integer. Let d|a and d|b. Then a = dn, b = dm for some $n, m \in \mathbb{Z}$ $\implies r = b - aq = dm - dnq = d(m - nq) \implies d$ divides r. Conversely, let d|r and d|a. Then r = dk, a = dn for some $k, n \in \mathbb{Z} \implies b = dnq + dk = d(nq + k) \implies d$ divides b. Thus the pairs a, b and r, a have the same common divisors. In particular, gcd(a, b) = gcd(r, a).

Euclidean algorithm

Theorem Given $a, b \in \mathbb{Z}$, 0 < a < b, there is a decreasing sequence of positive integers $r_1 > r_2 > \cdots > r_k$ such that $r_1 = b$, $r_2 = a$, r_i is the remainder of r_{i-2} by r_{i-1} for $3 \le i \le k$, and r_k divides r_{k-1} . Then $gcd(a, b) = r_k$.

Example. a = 1356, b = 744. gcd(a, b) = ?

We obtain

 $\begin{array}{l} 1356 = 744 \cdot 1 + 612, \\ 744 = 612 \cdot 1 + 132, \\ 612 = 132 \cdot 4 + 84, \\ 132 = 84 \cdot 1 + 48, \\ 84 = 48 \cdot 1 + 36, \\ 48 = 36 \cdot 1 + 12, \\ 36 = 12 \cdot 3. \end{array}$

Thus gcd(1356,744) = gcd(744,612) = gcd(612,132) = gcd(132,84) = gcd(84,48) = gcd(48,36) = gcd(36,12) = 12.

Theorem Let *a* and *b* be positive integers. Then gcd(a, b) is the smallest positive number represented as na+mb, $m, n \in \mathbb{Z}$ (that is, as an **integral linear combination** of *a* and *b*).

Proof: Let $L = \{x \in \mathbb{P} \mid x = na + mb \text{ for some } m, n \in \mathbb{Z}\}$ The set *L* is not empty as $b = 0a + 1b \in L$. Hence it has the smallest element *c*. We have c = na + mb, $m, n \in \mathbb{Z}$.

Consider the remainder *r* left after division of *a* by *c*. Then r = a - cq, where *q* is the partial quotient. It follows that r = a - (na + mb)q = (1 - nq)a + (-mq)b. Since r < c, the number *r* cannot belong to the set *L*. Therefore r = 0. That is, *c* divides *a*. Similarly, one can prove that *c* divides *b*. Let d > 0 be another common divisor of *a* and *b*. Then a = dk and b = dl for some $k, l \in \mathbb{Z}$ $\implies c = na + mb = ndk + mdl = d(nk + ml)$ $\implies d$ divides $c \implies d < c$.

Corollary gcd(a, b) is divisible by any other common divisor of *a* and *b*.

Problem. Find an integer solution of the equation 1356m + 744n = 12.

Let us use calculations done for the Euclidean algorithm applied to 1356 and 744.

 $1356 = 744 \cdot 1 + 612$ $\implies 612 = 1 \cdot 1356 - 1 \cdot 744$ $744 = 612 \cdot 1 + 132$ $\implies 132 = 744 - 612 = -1 \cdot 1356 + 2 \cdot 744$ $612 = 132 \cdot 4 + 84$ \implies 84 = 612 - 4 · 132 = 5 · 1356 - 9 · 744 $132 = 84 \cdot 1 + 48$ \implies 48 = 132 - 84 = -6 · 1356 + 11 · 744 $84 = 48 \cdot 1 + 36$ \implies 36 = 84 - 48 = 11 · 1356 - 20 · 744 $48 = 36 \cdot 1 + 12$ $\implies 12 = 48 - 36 = -17 \cdot 1356 + 31 \cdot 744$ Thus m = -17, n = 31 is a solution.

Alternative solution. Consider a matrix $\begin{pmatrix} 1 & 0 & | & 1356 \\ 0 & 1 & | & 744 \end{pmatrix}$, which is the augmented matrix of a system $\begin{cases} x = 1356, \\ y = 744. \end{cases}$

We are going to apply elementary row operations to this matrix until we get 12 in the rightmost column.

$$\begin{pmatrix} 1 & 0 & | & 1356 \\ 0 & 1 & | & 744 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 612 \\ 0 & 1 & | & 744 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 612 \\ -1 & 2 & | & 132 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 5 & -9 & | & 84 \\ -1 & 2 & | & 132 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -9 & | & 84 \\ -6 & 11 & | & 48 \end{pmatrix} \rightarrow \begin{pmatrix} 11 & -20 & | & 36 \\ -6 & 11 & | & 48 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 11 & -20 & | & 36 \\ -17 & 31 & | & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 62 & -113 & | & 0 \\ -17 & 31 & | & 12 \end{pmatrix}$$

Hence the above system is equivalent to

$$\begin{cases} 62x - 113y = 0, \\ -17x + 31y = 12. \end{cases}$$

Thus m = -17, n = 31 is a solution to 1356m + 744n = 12.