MATH 433
 Applied Algebra

Lecture 6:
Congruences (continued). Modular arithmetic.

Congruences

Let n be a positive integer. The integers a and b are called congruent modulo n if they have the same remainder when divided by n. An equivalent condition is that n divides the difference $a-b$.
Notation. $a \equiv b \bmod n$ or $a \equiv b(\bmod n)$.
Proposition 1 If $a \equiv b \bmod n$ then for any $c \in \mathbb{Z}$,
(i) $a+c n \equiv b \bmod n$;
(ii) $a+c \equiv b+c \bmod n$;
(iii) $a c \equiv b c \bmod n$.

Proposition 2 If $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, then
(i) $a+b \equiv a^{\prime}+b^{\prime} \bmod n$;
(ii) $a-b \equiv a^{\prime}-b^{\prime} \bmod n$;
(iii) $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Primes in arithmetic progressions

Theorem There are infinitely many prime numbers of the form $4 n+3, n \in \mathbb{N}$.
Proof: Let $p_{1}, p_{2}, \ldots, p_{k}$ be any finite collection of primes different from 3 and satisfying $p_{i} \equiv 3 \bmod 4$. We need to show that it does not include all primes of that form. Consider the number $N=4 p_{1} p_{2} \ldots p_{k}+3$. Let $N=q_{1} q_{2} \ldots q_{m}$ be its prime factorisation. By construction, N is odd and not divisible by $p_{1}, p_{2}, \ldots, p_{k}$ and 3 . Hence each prime factor q_{j} is odd and different from $p_{1}, p_{2}, \ldots, p_{k}$ and 3 . If we assumed that $q_{j} \equiv 1 \bmod 4$ for $j=1,2, \ldots, m$, then it would follow that $N \equiv 1 \bmod 4$. However, $N \equiv 3 \bmod 4$ by construction. We conclude that $q_{j} \equiv 3 \bmod 4$ for some $j, 1 \leq j \leq m$.

Theorem (Dirichlet 1837) Suppose a and d are positive integers such that $\operatorname{gcd}(a, d)=1$. Then the arithmetic progression $a, a+d, a+2 d, \ldots$ contains infinitely many prime numbers.

Divisibility of decimal integers

Let $\overline{d_{k} d_{k-1} \ldots d_{3} d_{2} d_{1}}$ be the decimal notation of a positive integer $n\left(0 \leq d_{i} \leq 9\right)$. Then

$$
n=d_{1}+10 d_{2}+10^{2} d_{3}+\cdots+10^{k-2} d_{k-1}+10^{k-1} d_{k} .
$$

Proposition 1 The integer n is divisible by 2,5 or 10 if and only if the last digit d_{1} is divisible by the same number.

Proposition 2 The integer n is divisible by 4, 20, 25, 50 or 100 if and only if $\overline{d_{2} d_{1}}$ is divisible by the same number.

Proposition 3 The integer n is divisible by 3 or 9 if and only if the sum of its digits $d_{k}+\cdots+d_{2}+d_{1}$ is divisible by the same number.
Proposition 4 The integer n is divisible by 11 if and only if the alternating sum of its digits
$(-1)^{k-1} d_{k}+\cdots+d_{3}-d_{2}+d_{1}$ is divisible by 11 .
Hint: $10^{m} \equiv 1 \bmod 9,10^{m} \equiv 1 \bmod 3,10^{m} \equiv(-1)^{m} \bmod 11$.

Problem. Determine the last digit of 7^{2024}.
The last digit is the remainder after division by 10 . We have $7^{1} \equiv 7 \bmod 10$ and $7^{2}=49 \equiv 9 \bmod 10$. Then

$$
7^{3}=7^{2} \cdot 7 \equiv 9 \cdot 7=63 \equiv 3(\bmod 10)
$$

Further,

$$
7^{4}=7^{3} \cdot 7 \equiv 3 \cdot 7=21 \equiv 1(\bmod 10)
$$

Now it follows that $7^{n+4} \equiv 7^{n} \bmod 10$ for all $n \geq 1$.
Therefore the last digits of the numbers
$7^{1}, 7^{2}, 7^{3}, \ldots, 7^{n}, \ldots$ form a periodic sequence with period 4 . Since $2024 \equiv 0 \bmod 4$, the last digit of 7^{2024} is the same as the last digit of 7^{4}, which is 1 .

Congruence classes

Given an integer a, the congruence class of a modulo n is the set of all integers congruent to a modulo n.
Notation. [a] ${ }_{n}$ or simply [a]. Also denoted $a+n \mathbb{Z}$ as $[a]_{n}=\{a+n k: k \in \mathbb{Z}\}$.
Examples. $\quad[0]_{2}$ is the set of even integers, $[1]_{2}$ is the set of odd integers, $[2]_{4}$ is the set of even integers not divisible by 4 .

If n divides a positive integer m, then every congruence class modulo n is the union of m / n congruence classes modulo m.
For example, $[2]_{4}=[2]_{8} \cup[6]_{8}$.
The congruence class $[0]_{n}$ is called the zero congruence class. It consists of the integers divisible by n.

The set of all congruence classes modulo n is denoted \mathbb{Z}_{n}. It consists of n elements $[0]_{n},[1]_{n},[2]_{n}, \ldots,[n-1]_{n}$.

Modular arithmetic

Modular arithmetic is an arithmetic on the set \mathbb{Z}_{n} for some $n \geq 1$. The arithmetic operations on \mathbb{Z}_{n} are defined as follows. For any integers a and b, we let

$$
\begin{gathered}
{[a]_{n}+[b]_{n}=[a+b]_{n},} \\
{[a]_{n}-[b]_{n}=[a-b]_{n},} \\
{[a]_{n} \times[b]_{n}=[a b]_{n} .}
\end{gathered}
$$

Theorem The arithmetic operations on \mathbb{Z}_{n} are well defined, namely, they do not depend on the choice of representatives a, b for the congruence classes.
Proof: Let a^{\prime} be another representative of $[a]_{n}$ and b^{\prime} be another representative of $[b]_{n}$. Then $a^{\prime} \equiv a \bmod n$ and $b^{\prime} \equiv b \bmod n$. According to a previously proved proposition, this implies $a^{\prime}+b^{\prime} \equiv a+b \bmod n, a^{\prime}-b^{\prime} \equiv a-b \bmod n$ and $a^{\prime} b^{\prime} \equiv a b \bmod n$. In other words, $\left[a^{\prime}+b^{\prime}\right]_{n}=[a+b]_{n}$, $\left[a^{\prime}-b^{\prime}\right]_{n}=[a-b]_{n}$ and $\left[a^{\prime} b^{\prime}\right]_{n}=[a b]_{n}$.

