MATH 433 Applied Algebra

Lecture 10: Order of a congruence class. Fermat's Little Theorem.

Powers of a congruence class

Let $[a] \in \mathbb{Z}_n$ be a congruence class modulo n. The powers $[a]^k$, k = 1, 2, ... are defined inductively: $[a]^1 = [a]$ and $[a]^k = [a]^{k-1}[a]$ for k > 1. It easily follows by induction that $[a]^k = [a^k]$ for all $k \ge 1$.

Theorem 1 $[a]^{k+m} = [a]^k [a]^m$ and $[a]^{km} = ([a]^k)^m$ for all $k, m \ge 1$.

In the case when [a] is invertible, we also let $[a]^0 = [1]$ and $[a]^{-k} = ([a]^{-1})^k$ for each $k \ge 1$.

Theorem 2 If [a] is invertible, then $[a]^{k+m} = [a]^k [a]^m$ and $[a]^{km} = ([a]^k)^m$ for all $k, m \in \mathbb{Z}$.

Finite multiplicative order

A congruence class $[a]_n$ is said to have **finite (multiplicative)** order if $[a]_n^k = [1]_n$ for some positive integer k. The smallest k with this property is called the order of $[a]_n$. We also say that k is the order of a modulo n.

Theorem A congruence class $[a]_n$ has finite order if and only if it is invertible (i.e., *a* is coprime with *n*).

Proof: If $[a]_n$ has finite order k, then $[1]_n = [a]_n^k = [a]_n [a]_n^{k-1}$, which implies that $[a]_n$ is invertible and $[a]_n^{-1} = [a]_n^{k-1}$. Conversely, suppose that $[a]_n$ is invertible. Since the set \mathbb{Z}_n is finite, the sequence $[a]_n, [a]_n^2, [a]_n^3, \ldots$ contains repetitions. Hence for some integers r and s, 0 < r < s, we will have

$$[a]_n^s = [a]_n^r \implies [a]_n^s [a]_n^{-r} = [a]_n^r [a]_n^{-r} \implies [a]_n^{s-r} = [1]_n.$$

Remark. If $[a]_n$ is invertible then $[1]_n, [a]_n, [a^2]_n, [a^3]_n, \ldots$ is a periodic sequence (the order of $[a]_n$ is the period). Otherwise this sequence is eventually periodic, but not periodic.

Proposition 1 Let k be the order of an integer a modulo n. Then $a^s \equiv 1 \mod n$ if and only if s is a multiple of k.

Proof: If
$$s = k\ell$$
, where $\ell \in \mathbb{N}$, then
 $[a^s]_n = [a]_n^s = ([a]_n^k)^\ell = [1]_n^\ell = [1]_n$.
Conversely, let $[a]_n^s = [1]_n$. We have $s = kq + r$, where q is
the quotient and r is the remainder of s by k . Then
 $[a]^r = [a]^{s-kq} = [a]^s([a]^k)^{-q} = [1]([1])^{-q} = [1]$.
Since $0 < r < k$, it follows that $r = 0$.

Proposition 2 Let k be the order of an integer a modulo n. Then $a^s \equiv a^t \mod n$ if and only if $s \equiv t \mod k$.

Proof: If $s \equiv t \mod k$, then $s - t = \ell k$, $\ell \in \mathbb{Z}$. It follows that $[a^s] = [a]^s = [a]^{t+\ell k} = [a]^t ([a]^k)^\ell = [a]^t [1]^\ell = [a]^t = [a^t]$. Conversely, if $[a^s] = [a^t]$, then $[a]^{s-t} = [a]^s [a]^{-t} = [a]^s ([a]^t)^{-1} = [a^s] [a^t]^{-1} = [a^t] [a^t]^{-1} = [1]$. By Proposition 1, s - t is a multiple of k.

Examples. • $G_7 = \{[1], [2], [3], [4], [5], [6]\}.$ $[1]^1 = [1],$ $[2]^2 = [4], [2]^3 = [8] = [1],$ $[3]^2 = [9] = [2], [3]^3 = [2][3] = [6], [3]^4 = [2]^2 = [4],$ $[3]^5 = [4][3] = [5], [3]^6 = [3][5] = [1].$ $[4]^2 = [16] = [2], \ [4]^3 = [4][2] = [1].$ $[5]^2 = [25] = [4], \ [5]^3 = [4][5] = [-1], \ [5]^4 = [-1][5] = [2],$ $[5]^5 = [2][5] = [3], [5]^6 = [3][5] = [1].$ $[6]^2 = [-1]^2 = [1].$ Thus [1] has order 1, [6] has order 2, [2] and [4] have order 3, and [3] and [5] have order 6.

•
$$G_{12} = \{[1], [5], [7], [11]\}$$
.
 $[1]^1 = [1], [5]^2 = [25] = [1], [7]^2 = [-5]^2 = [25] = [1],$
 $[11]^2 = [-1]^2 = [1].$
Thus [1] has order 1 while [5], [7], and [11] have order 2.

Fermat's Little Theorem Let p be a prime number. Then $a^{p-1} \equiv 1 \mod p$ for every integer a not divisible by p.

Proof: Consider two lists of congruence classes modulo p: [1], [2], ..., [p - 1] and [a][1], [a][2], ..., [a][p - 1].

The first one is the list of all elements of G_p . Since *a* is not a multiple of *p*, it's class [*a*] is in G_p as well. It follows that all elements in the second list are from G_p . Also, all elements in the second list are distinct as

 $[a][n] = [a][m] \implies [a]^{-1}[a][n] = [a]^{-1}[a][m] \implies [n] = [m].$ It follows that the second list consists of the same elements as the first (arranged in a different way). Therefore

$$[a][1] \cdot [a][2] \cdots [a][p-1] = [1] \cdot [2] \cdots [p-1].$$

Hence $[a]^{p-1}X = X$, where $X = [1] \cdot [2] \cdots [p-1]$. Note that $X \in G_p$ since G_p is closed under multiplication. That is, X is invertible. Then $[a]^{p-1}XX^{-1} = XX^{-1}$ $\implies [a]^{p-1}[1] = [1] \implies [a^{p-1}] = [1]$. **Corollary 1** Let p be a prime number. Then $a^p \equiv a \mod p$ for every integer a (that is, $a^p - a$ is a multiple of p).

Corollary 2 Let *a* be an integer not divisible by a prime number *p*. Then the order of *a* modulo *p* is a divisor of p - 1.

Proof: By Fermat's Little Theorem, $a^{p-1} \equiv 1 \mod p$. According to a previously proved proposition, $a^s \equiv 1 \mod p$ for some $s \ge 1$ if and only if s is divisible by the order of the number a modulo p.

Problem. Find the remainder of 12⁵⁰ after division by 17.

Since 17 is prime and 12 is not a multiple of 17, we have $[12]_{17}^{16} = [1]_{17}$. Then $[12^{50}] = [12]^{50} = [12]^{3 \cdot 16 + 2}$ = $([12]^{16})^3 \cdot [12]^2 = [12]^2 = [-5]^2 = [25] = [8]$. Hence the remainder is 8.