
MATH 433

Applied Algebra

Lecture 15:

Relations (continued).
Finite state machines.



Relations

Definition. Let X and Y be sets. A relation R

from X to Y is given by specifying a subset of the
Cartesian product: SR ⊂ X × Y .

If (x , y) ∈ SR , then we say that x is related to y

(in the sense of R or by R) and write xRy .

Remarks. • Usually the relation R is identified
with the set SR .

• In the case X = Y , the relation R is called a
relation on X .



Examples. • “is equal to”
xRy ⇐⇒ x = y

Equivalently, R = {(x , x) | x ∈ X ∩ Y }.

• “is not equal to”
xRy ⇐⇒ x 6= y

• “is mapped by f to”
xRy ⇐⇒ y = f (x), where f : X → Y is a function.
Equivalently, R is the graph of the function f .

• “is the image under f of”
(from Y to X ) yRx ⇐⇒ y = f (x), where f : X → Y is a
function. If f is invertible, then R is the graph of f −1.

• reversed R ′

xRy ⇐⇒ yR ′x , where R ′ is a relation from Y to X .

• not R ′

xRy ⇐⇒ not xR ′y , where R ′ is a relation from X to Y .
Equivalently, R = (X × Y ) \ R ′ (set difference).



Relations on a set
• “is equal to”
xRy ⇐⇒ x = y

• “is not equal to”
xRy ⇐⇒ x 6= y

• “is less than”
X = R, xRy ⇐⇒ x < y

• “is less than or equal to”
X = R, xRy ⇐⇒ x ≤ y

• “is contained in”
X = the set of all subsets of some set Y ,
xRy ⇐⇒ x ⊂ y

• “is congruent modulo n to”
X = Z, xRy ⇐⇒ x ≡ y mod n

• “divides”
X = P, xRy ⇐⇒ x |y



A relation R on a finite set X can be represented by

a directed graph.

Vertices of the graph are elements of X , and we
have a directed edge from x to y if and only if xRy .

Another way to represent the relation R is the

adjacency table.

Rows and columns are labeled by elements of X .
We put 1 at the intersection of a row x with a

column y if xRy . Otherwise we put 0.



a

b

c

a

b

c d

e

a b c

a 0 1 1
b 0 1 1

c 1 0 0

a b c d e

a 0 1 1 0 0
b 0 1 1 0 0
c 0 0 0 1 0
d 0 0 0 0 1
e 1 0 0 0 0



Properties of relations

Definition. Let R be a relation on a set X . We

say that R is
• reflexive if xRx for all x ∈ X ,
• symmetric if, for all x , y ∈ X , xRy implies

yRx ,
• antisymmetric if, for all x , y ∈ X , xRy and

yRx cannot hold simultaneously,
• weakly antisymmetric if, for all x , y ∈ X ,

xRy and yRx imply that x = y ,
• transitive if, for all x , y , z ∈ X , xRy and yRz

imply that xRz .



Partial ordering

Definition. A relation R on a set X is a partial
ordering (or partial order) if R is reflexive, weakly

antisymmetric, and transitive:
• xRx ,
• xRy and yRx =⇒ x = y ,

• xRy and yRz =⇒ xRz .

A relation R on a set X is a strict partial order if
R is antisymmetric and transitive:

• xRy =⇒ not yRx ,
• xRy and yRz =⇒ xRz .

Examples. “is less than or equal to”, “is contained in”, “is a
divisor of” are partial orders. “is less than” is a strict order.



Hasse diagrams

Any partial order � on a finite set S can be visualized by
a directed graph called the Hasse diagram. Nodes of the
graph are elements of S . The graph contains an edge from
a node x to a node y if x � y , x 6= y , and there is no z

different from x and y such that x � z � y .

Given x , y ∈ S , we have x � y if and only if there is a
directed path from x to y in the Hasse diagram (the path
may not be unique).

The Hasse diagram is usually drawn so that y is located higher
than x whenever x � y and x 6= y . That way it is easier to
find directed paths. Besides, the edges need not be drawn as
arrows since directions are clear from the picture.



Examples of Hasse diagrams

• Subsets of {a, b, c}

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅



Examples of Hasse diagrams

• Divisors of 12 • Divisors of 30

12

4 6

2 3

1

30

6 10 15

2 3 5

1



Equivalence relation

Definition. A relation R on a set X is an equivalence
relation if R is reflexive, symmetric, and transitive:
• xRx ,
• xRy =⇒ yRx ,
• xRy and yRz =⇒ xRz .

Examples. “is equal to”, “is congruent modulo n to” are
equivalence relations.

Given an equivalence relation R on X , the equivalence class
of an element x ∈ X relative to R is the set of all elements
y ∈ X such that yRx .

Theorem The equivalence classes form a partition of the set
X , which means that
• any two equivalence classes either coincide, or else they are
disjoint,
• any element of X belongs to some equivalence class.



Finite state machine

A finite state machine is a triple M = (S ,A, t),

where S and A are nonempty finite sets and
t : S × A → S is a function.

• Elements of S are called states.

• There is one distinguished element of S called
the initial state.

• The set A is called the input alphabet, its
elements are called letters.
• The function t is called the state transition

function.

Notation in the textbook: the states are denoted by natural
numbers; the initial state is denoted 0; the alphabet is a
subset of the Roman alphabet.



We think of the finite state machine M = (S ,A, t)

as a formal description of a certain device that
operates in a discrete manner. At any moment it is

supposed to be in some state s ∈ S . The machine
reads an input letter a ∈ A. Then it makes

transition to the state t(s, a). After that the
machine is ready to accept another input letter.

A machine’s job looks as follows. We prepare an

input word w , i.e., a sequence a1a2 . . . an of letters
from A. Then we set the machine to the initial

state s0 and start inputting the word w into it,
letter by letter. The machine’s job results in a

sequence of states s0, s1, . . . , sn, which describes
the internal work of the device.



current state s

input letter a






y

transition to the state s ′ = t(s, a)

One way to define (or picture) a finite state machine is the
Moore diagram. This is a directed graph with labeled
vertices and edges. Vertices are labeled by states, edges show
possible transition routes (labeled by letters). The initial state
is marked by an arrow pointing at it from nowhere.

s s
′

a



Example

0

1

2

a

a

b

b a, b

a b

0 1 2

1 2 1
2 0 0

(The table is another way to define the transition function.)

Suppose that the input word is w = abaab. The internal
work of the machine on this input is determined by a path in
the graph such that (i) the path starts at the initial state 0
and (ii) the word w is read off the labels along the path.

0 1 1 2 0 2
a b a a b



Actions

The finite state machine as defined above is simply a
transition machine. To make use of it, we need to add
actions, which means activities triggered by the machine’s
work.

There are four types of actions:

• entry action is performed upon entering a state,
• exit action is performed upon exiting a state,
• transition action is performed upon specific transition,
• input action is performed depending on present state and
input.

The input action is the most general type of action. Actions
of the other types can be simulated by input actions.



A Moore machine is a finite state machine that

uses only entry actions.

A Mealy machine is a finite state machine that
uses only input actions.

Both kinds of machines are equivalent in terms of

functionality. The Moore machines have simpler
behaviour while the use of the Mealy machines

allows to reduce the number of states.


