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Lecture 17:
Permutations (continued).

Cycle decomposition.



Permutations

Let X be a finite set. A permutation of X is a bijection
from X to itself. Permutations are traditionally denoted by
Greek letters (π, σ, τ , ρ,. . . ).

Two-row notation. π =

(

a b c . . .

π(a) π(b) π(c) . . .

)

,

where a, b, c, . . . is a list of all elements in the domain of π.

The set of all permutations of a finite set X is called the
symmetric group on X . Notation: SX , ΣX , Sym(X ).
The set of all permutations of {1, 2, . . . , n} is called the
symmetric group on n symbols and denoted S(n) or Sn.

Given two permutations π and σ, the composition πσ, defined
by πσ(x) = π(σ(x)), is called the product of these
permutations. In general, πσ 6= σπ, i.e., multiplication of
permutations is not commutative. However, it is associative:
π(στ) = (πσ)τ .



Example. The symmetric group S(3) consists of 6 permutations:
(

1 2 3

1 2 3

)

,

(

1 2 3

1 3 2

)

,

(

1 2 3

2 1 3

)

,

(

1 2 3

2 3 1

)

,

(

1 2 3

3 1 2

)

,

(

1 2 3

3 2 1

)

.

Theorem The symmetric group S(n) has n! = 1 · 2 · 3 · · ·n
elements.

Traditional argument: The number of elements in S(n) is the
number of different rearrangements x1, x2, . . . , xn of the list
1, 2, . . . , n. There are n possibilities to choose x1. For any
choice of x1, there are n−1 possibilities to choose x2. And so
on. . .

Alternative argument: Any rearrangement of the list
1, 2, . . . , n can be obtained as follows. We take a
rearrangement of 1, 2, . . . , n−1 and then insert n into it. By
the inductive assumption, there are (n−1)! ways to choose a
rearrangement of 1, 2, . . . , n−1. For any choice, there are n

ways to insert n.



Product of permutations

Let π and σ be two permutations of the same set. To find
the product πσ, we write π underneath σ (in two-row
notation), then reorder the columns so that the second row of
σ matches the first row of π, then erase the matching rows.

Example. π =

(

1 2 3 4 5

2 3 4 5 1

)

, σ =

(

1 2 3 4 5

3 2 1 5 4

)

.

σ =

(

1 2 3 4 5

3 2 1 5 4

)

π =

(

3 2 1 5 4

4 3 2 1 5

) =⇒ πσ =

(

1 2 3 4 5

4 3 2 1 5

)

To find π−1, we simply exchange the upper and lower rows:
(

1 2 3 4 5

2 3 4 5 1

)

−1

=

(

2 3 4 5 1

1 2 3 4 5

)

=

(

1 2 3 4 5

5 1 2 3 4

)

.



Cycles
A permutation π of a set X is called a cycle (or cyclic) of
length r if there exist r distinct elements x1, x2, . . . , xr ∈ X

such that

π(x1) = x2, π(x2) = x3, . . . , π(xr−1) = xr , π(xr) = x1,

and π(x) = x for any other x ∈ X .

Notation. π = (x1 x2 . . . xn).

The identity function is (the only) cycle of length 1. Any
cycle of length 2 is called a transposition.

The inverse of a cycle is also a cycle of the same length.
Indeed, if π = (x1 x2 . . . xn), then π

−1 = (xn xn−1 . . . x2 x1).

Example. Any permutation of {1, 2, 3} is a cycle.
(

1 2 3
1 2 3

)

= id,

(

1 2 3
1 3 2

)

= (2 3),

(

1 2 3
2 1 3

)

= (1 2),
(

1 2 3
2 3 1

)

=(1 2 3),

(

1 2 3
3 1 2

)

=(1 3 2),

(

1 2 3
3 2 1

)

=(1 3).



Cycle decomposition
Let π be a permutation of X . We say that π moves an
element x ∈ X if π(x) 6= x . Otherwise π fixes x .

Two permutations π and σ are called disjoint if the set of
elements moved by π is disjoint from the set of elements
moved by σ.

Theorem If π and σ are disjoint permutations in SX , then
they commute: πσ = σπ.

Idea of the proof: If π moves an element x , then it also moves
π(x). Hence σ fixes both so that πσ(x) = σπ(x) = π(x).

Theorem Any permutation of a finite set can be expressed as
a product of disjoint cycles. This cycle decomposition is
unique up to rearrangement of the cycles involved.

Idea of the proof: Given π ∈ SX , for any x ∈ X consider a
sequence a1 = x , a2, a3, . . . , where am+1 = π(am). Let r be
the least index such that ar = ak for some k < r . Then k = 1.


