MATH 433
Applied Algebra Lecture 17:
Permutations (continued). Cycle decomposition.

Permutations

Let X be a finite set. A permutation of X is a bijection from X to itself. Permutations are traditionally denoted by Greek letters ($\pi, \sigma, \tau, \rho, \ldots$).
Two-row notation. $\quad \pi=\left(\begin{array}{cccc}a & b & c & \ldots \\ \pi(a) & \pi(b) & \pi(c) & \ldots\end{array}\right)$,
where a, b, c, \ldots is a list of all elements in the domain of π.
The set of all permutations of a finite set X is called the symmetric group on X. Notation: $S_{X}, \Sigma_{X}, \operatorname{Sym}(X)$. The set of all permutations of $\{1,2, \ldots, n\}$ is called the symmetric group on n symbols and denoted $S(n)$ or S_{n}.

Given two permutations π and σ, the composition $\pi \sigma$, defined by $\pi \sigma(x)=\pi(\sigma(x))$, is called the product of these permutations. In general, $\pi \sigma \neq \sigma \pi$, i.e., multiplication of permutations is not commutative. However, it is associative: $\pi(\sigma \tau)=(\pi \sigma) \tau$.

Example. The symmetric group $S(3)$ consists of 6 permutations:
$\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$.

Theorem The symmetric group $S(n)$ has $n!=1 \cdot 2 \cdot 3 \cdots n$ elements.

Traditional argument: The number of elements in $S(n)$ is the number of different rearrangements $x_{1}, x_{2}, \ldots, x_{n}$ of the list $1,2, \ldots, n$. There are n possibilities to choose x_{1}. For any choice of x_{1}, there are $n-1$ possibilities to choose x_{2}. And so on. . .
Alternative argument: Any rearrangement of the list $1,2, \ldots, n$ can be obtained as follows. We take a rearrangement of $1,2, \ldots, n-1$ and then insert n into it. By the inductive assumption, there are ($n-1$)! ways to choose a rearrangement of $1,2, \ldots, n-1$. For any choice, there are n ways to insert n.

Product of permutations

Let π and σ be two permutations of the same set. To find the product $\pi \sigma$, we write π underneath σ (in two-row notation), then reorder the columns so that the second row of σ matches the first row of π, then erase the matching rows.

Example. $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right), \quad \sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4\end{array}\right)$.

$$
\begin{aligned}
\sigma & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right) \quad \Longrightarrow \quad \pi \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 5
\end{array}\right) \\
\pi & =\left(\begin{array}{lllll}
3 & 2 & 1 & 5 & 4 \\
4 & 3 & 2 & 1 & 5
\end{array}\right)
\end{aligned}
$$

To find π^{-1}, we simply exchange the upper and lower rows:

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right)^{-1}=\left(\begin{array}{lllll}
2 & 3 & 4 & 5 & 1 \\
1 & 2 & 3 & 4 & 5
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 2 & 3 & 4
\end{array}\right)
$$

Cycles

A permutation π of a set X is called a cycle (or cyclic) of length r if there exist r distinct elements $x_{1}, x_{2}, \ldots, x_{r} \in X$ such that

$$
\pi\left(x_{1}\right)=x_{2}, \pi\left(x_{2}\right)=x_{3}, \ldots, \pi\left(x_{r-1}\right)=x_{r}, \pi\left(x_{r}\right)=x_{1},
$$

and $\pi(x)=x$ for any other $x \in X$.
Notation. $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right)$.
The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a transposition.
The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right)$, then $\pi^{-1}=\left(\begin{array}{lll}x_{n} & x_{n-1} & \ldots\end{array} x_{2} x_{1}\right)$.
Example. Any permutation of $\{1,2,3\}$ is a cycle.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=\operatorname{id},\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right), \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right) .
\end{aligned}
$$

Cycle decomposition

Let π be a permutation of X. We say that π moves an element $x \in X$ if $\pi(x) \neq x$. Otherwise π fixes x.
Two permutations π and σ are called disjoint if the set of elements moved by π is disjoint from the set of elements moved by σ.

Theorem If π and σ are disjoint permutations in S_{X}, then they commute: $\pi \sigma=\sigma \pi$.
Idea of the proof: If π moves an element x, then it also moves $\pi(x)$. Hence σ fixes both so that $\pi \sigma(x)=\sigma \pi(x)=\pi(x)$.

Theorem Any permutation of a finite set can be expressed as a product of disjoint cycles. This cycle decomposition is unique up to rearrangement of the cycles involved. Idea of the proof: Given $\pi \in S_{X}$, for any $x \in X$ consider a sequence $a_{1}=x, a_{2}, a_{3}, \ldots$, where $a_{m+1}=\pi\left(a_{m}\right)$. Let r be the least index such that $a_{r}=a_{k}$ for some $k<r$. Then $k=1$.

