Lecture 17:

MATH 433

Applied Algebra

Permutations (continued). Cycle decomposition.

Permutations

Let X be a finite set. A **permutation** of X is a bijection from X to itself. Permutations are traditionally denoted by Greek letters $(\pi, \sigma, \tau, \rho, \ldots)$.

Two-row notation.
$$\pi = \begin{pmatrix} a & b & c & \dots \\ \pi(a) & \pi(b) & \pi(c) & \dots \end{pmatrix}$$
,

where a,b,c,\ldots is a list of all elements in the domain of π .

The set of all permutations of a finite set X is called the **symmetric group** on X. Notation: S_X , Σ_X , $\mathrm{Sym}(X)$. The set of all permutations of $\{1, 2, \ldots, n\}$ is called the **symmetric group** on n symbols and denoted S(n) or S_n .

Given two permutations π and σ , the composition $\pi\sigma$, defined by $\pi\sigma(x)=\pi(\sigma(x))$, is called the **product** of these permutations. In general, $\pi\sigma\neq\sigma\pi$, i.e., multiplication of permutations is not commutative. However, it is associative: $\pi(\sigma\tau)=(\pi\sigma)\tau$.

Example. The symmetric group S(3) consists of 6 permutations:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

Theorem The symmetric group S(n) has $n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$ elements.

Traditional argument: The number of elements in S(n) is the number of different rearrangements x_1, x_2, \ldots, x_n of the list $1, 2, \ldots, n$. There are n possibilities to choose x_1 . For any choice of x_1 , there are n-1 possibilities to choose x_2 . And so on...

choice of x_1 , there are n-1 possibilities to choose x_2 . And so on...

Alternative argument: Any rearrangement of the list $1, 2, \ldots, n$ can be obtained as follows. We take a rearrangement of $1, 2, \ldots, n-1$ and then insert n into it. By the inductive assumption, there are (n-1)! ways to choose a rearrangement of $1, 2, \ldots, n-1$. For any choice, there are n ways to insert n.

Product of permutations

Let π and σ be two permutations of the same set. To find the product $\pi\sigma$, we write π underneath σ (in two-row notation), then reorder the columns so that the second row of σ matches the first row of π , then erase the matching rows.

Example.
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$
$$\pi = \begin{pmatrix} 3 & 2 & 1 & 5 & 4 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix} \implies \pi\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}$$

To find π^{-1} , we simply exchange the upper and lower rows:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 3 & 4 & 5 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}.$$

Cycles

A permutation π of a set X is called a **cycle** (or **cyclic**) of length r if there exist r distinct elements $x_1, x_2, \ldots, x_r \in X$ such that

$$\pi(x_1) = x_2, \ \pi(x_2) = x_3, \ldots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = x_1,$$

and
$$\pi(x) = x$$
 for any other $x \in X$.

Notation.
$$\pi = (x_1 \ x_2 \ \dots \ x_n)$$
.

The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a **transposition**.

The inverse of a cycle is also a cycle of the same length. Indeed, if $\pi = (x_1 \ x_2 \ \dots \ x_n)$, then $\pi^{-1} = (x_n \ x_{n-1} \ \dots \ x_2 \ x_1)$.

Example. Any permutation of $\{1, 2, 3\}$ is a cycle.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = id, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (2 3), \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1 2),$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1 2 3), \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1 3 2), \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (1 3).$$

Cycle decomposition

Let π be a permutation of X. We say that π moves an element $x \in X$ if $\pi(x) \neq x$. Otherwise π fixes x.

Two permutations π and σ are called **disjoint** if the set of elements moved by π is disjoint from the set of elements moved by σ .

Theorem If π and σ are disjoint permutations in S_X , then they commute: $\pi\sigma = \sigma\pi$.

Idea of the proof: If π moves an element x, then it also moves $\pi(x)$. Hence σ fixes both so that $\pi\sigma(x) = \sigma\pi(x) = \pi(x)$.

Theorem Any permutation of a finite set can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Idea of the proof: Given $\pi \in S_X$, for any $x \in X$ consider a sequence $a_1 = x, a_2, a_3, \ldots$, where $a_{m+1} = \pi(a_m)$. Let r be the least index such that $a_r = a_k$ for some k < r. Then k = 1.