MATH 433 Applied Algebra

Lecture 18: Cycle decomposition (continued). Order of a permutation.

## Cycles

A permutation  $\pi$  of a set X is called a **cycle** (or **cyclic**) of length r if there exist r distinct elements  $x_1, x_2, \ldots, x_r \in X$  such that

 $\pi(x_1) = x_2, \ \pi(x_2) = x_3, \dots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = x_1,$ and  $\pi(x) = x$  for any other  $x \in X$ . Notation.  $\pi = (x_1 \ x_2 \ \dots \ x_r).$ 

The identity function is (the only) cycle of length 1. Any cycle of length 2 is called a **transposition**.

In the case  $S = \{1, 2, ..., n\}$ , we define an **adjacent** transposition as a transposition of the form  $(k \ k+1)$ .

The inverse of a cycle is also a cycle of the same length. Indeed, if  $\pi = (x_1 \ x_2 \ \dots \ x_r)$ , then  $\pi^{-1} = (x_r \ x_{r-1} \ \dots \ x_2 \ x_1)$ .

# **Cycle decomposition**

Let  $\pi$  be a permutation of X. We say that  $\pi$  **moves** an element  $x \in X$  if  $\pi(x) \neq x$ . Otherwise  $\pi$  **fixes** x.

Two permutations  $\pi$  and  $\sigma$  are called **disjoint** if the set of elements moved by  $\pi$  is disjoint from the set of elements moved by  $\sigma$ .

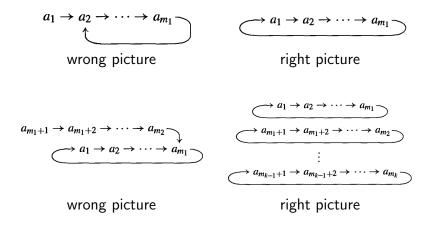
**Theorem** If  $\pi$  and  $\sigma$  are disjoint permutations in  $S_X$ , then they commute:  $\pi \sigma = \sigma \pi$ .

Idea of the proof: If  $\pi$  moves an element x, then it also moves  $\pi(x)$ . Hence  $\sigma$  fixes both so that  $\pi\sigma(x) = \sigma\pi(x) = \pi(x)$ .

**Theorem** Any permutation of a finite set can be expressed as a product of disjoint cycles. This **cycle decomposition** is unique up to rearrangement of the cycles involved.

Idea of the proof: Given  $\pi \in S_X$ , for any  $x \in X$  consider a sequence  $a_1 = x, a_2, a_3, \ldots$ , where  $a_{m+1} = \pi(a_m)$ . Let r be the least index such that  $a_r = a_k$  for some k < r. Then k = 1.

## **Cycle decomposition**



*Remark.* Any cycle of length *m* can be denoted in *m* different ways depending on a choice of the initial point. For example,  $(1\ 2\ 3\ 4) = (2\ 3\ 4\ 1) = (3\ 4\ 1\ 2) = (4\ 1\ 2\ 3).$ 

#### **Examples**

 $\bullet \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$ = (1 2 4 9 3 7 5)(6 12 8 11)(10) = (1 2 4 9 3 7 5)(6 12 8 11).

- $(1 \ 2)(2 \ 3)(3 \ 4)(4 \ 5)(5 \ 6) = (1 \ 2 \ 3 \ 4 \ 5 \ 6).$
- $(1 \ 2)(1 \ 3)(1 \ 4)(1 \ 5) = (1 \ 5 \ 4 \ 3 \ 2).$
- (2 4 3)(1 2)(2 3 4) = (1 4).

# Examples

• 
$$(1 \ 2)(2 \ 3)(3 \ 4)(4 \ 5)(5 \ 6) = ?$$

$$(5\ 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 6 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 6 & 5 \end{pmatrix}$$
$$(4\ 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 6 & 5 \\ 1 & 2 & 3 & 5 & 6 & 4 \end{pmatrix}$$
$$(3\ 4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 & 6 & 4 \\ 1 & 2 & 4 & 5 & 6 & 3 \end{pmatrix}$$
$$(2\ 3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 5 & 6 & 3 \\ 1 & 3 & 4 & 5 & 6 & 2 \end{pmatrix}$$
$$(1\ 2) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 4 & 5 & 6 & 2 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$
Hence  $(1\ 2)(2\ 3)(3\ 4)(4\ 5)(5\ 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$ 
$$= (1\ 2\ 3\ 4\ 5\ 6).$$

## Powers of a permutation

Let  $\pi$  be a permutation. The positive **powers** of  $\pi$  are defined inductively:

 $\pi^1 = \pi$  and  $\pi^{k+1} = \pi \cdot \pi^k$  for every integer  $k \ge 1$ .

The negative powers of  $\pi$  are defined as the positive powers of its inverse:  $\pi^{-k} = (\pi^{-1})^k$  for every positive integer k. Finally, we set  $\pi^0 = id$ .

**Theorem** Let  $\pi$  be a permutation and  $r, s \in \mathbb{Z}$ . Then (i)  $\pi^r \pi^s = \pi^{r+s}$ , (ii)  $(\pi^r)^s = \pi^{rs}$ , (iii)  $(\pi^r)^{-1} = \pi^{-r}$ .

*Remark.* The theorem is proved in the same way as the analogous statement on invertible congruence classes.

### Order of a permutation

**Theorem** Let  $\pi$  be a permutation. Then there is a positive integer *m* such that  $\pi^m = id$ .

*Proof:* Consider the list of powers:  $\pi, \pi^2, \pi^3, \ldots$  Since there are only finitely many permutations of any finite set, there must be repetitions within the list. Hence we have  $\pi^r = \pi^s$ , where 0 < r < s. Then  $\pi^{s-r} = \pi^s \pi^{-r} = \pi^s (\pi^r)^{-1} = \mathrm{id}$ .

The **order** of a permutation  $\pi$ , denoted  $o(\pi)$ , is defined as the smallest positive integer *m* such that  $\pi^m = id$ .

**Theorem** Let  $\pi$  be a permutation of order m. Then  $\pi^r = \pi^s$  if and only if  $r \equiv s \mod m$ . In particular,  $\pi^r = \text{id}$  if and only if the order m divides r.

**Theorem** If a permutation  $\pi$  is a cycle, then the order  $o(\pi)$  equals the length of the cycle.

Examples. • 
$$\pi = (1 \ 2 \ 3 \ 4 \ 5).$$
  
 $\pi^2 = (1 \ 3 \ 5 \ 2 \ 4), \ \pi^3 = (1 \ 4 \ 2 \ 5 \ 3),$   
 $\pi^4 = (1 \ 5 \ 4 \ 3 \ 2), \ \pi^5 = \text{id.}$   
 $\implies o(\pi) = 5.$ 

• 
$$\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6).$$
  
 $\sigma^2 = (1 \ 3 \ 5)(2 \ 4 \ 6), \ \sigma^3 = (1 \ 4)(2 \ 5)(3 \ 6),$   
 $\sigma^4 = (1 \ 5 \ 3)(2 \ 6 \ 4), \ \sigma^5 = (1 \ 6 \ 5 \ 4 \ 3 \ 2), \ \sigma^6 = \mathrm{id}.$   
 $\implies o(\sigma) = 6.$ 

• 
$$\tau = (1 \ 2 \ 3)(4 \ 5).$$
  
 $\tau^2 = (1 \ 3 \ 2), \ \tau^3 = (4 \ 5), \ \tau^4 = (1 \ 2 \ 3),$   
 $\tau^5 = (1 \ 3 \ 2)(4 \ 5), \ \tau^6 = \mathrm{id}.$   
 $\implies o(\tau) = 6.$ 

**Lemma 1** Let  $\pi$  and  $\sigma$  be two commuting permutations:  $\pi\sigma = \sigma\pi$ . Then (i) the powers  $\pi^r$  and  $\sigma^s$  commute for all  $r, s \in \mathbb{Z}$ , (ii)  $(\pi\sigma)^r = \pi^r \sigma^r$  for all  $r \in \mathbb{Z}$ .

**Lemma 2** Let  $\pi$  and  $\sigma$  be disjoint permutations in  $S_X$ . Then (i) the powers  $\pi^r$  and  $\sigma^s$  are also disjoint, (ii)  $\pi^r \sigma^s = \operatorname{id}$  implies  $\pi^r = \sigma^s = \operatorname{id}$ .

**Lemma 3** Let  $\pi$  and  $\sigma$  be disjoint permutations in  $S_X$ . Then (i) they commute:  $\pi \sigma = \sigma \pi$ , (ii)  $(\pi \sigma)^r = \text{id}$  if and only if  $\pi^r = \sigma^r = \text{id}$ , (iii)  $o(\pi \sigma) = \text{lcm}(o(\pi), o(\sigma))$ .

**Theorem** Let  $\pi \in S_X$  and suppose that  $\pi = \sigma_1 \sigma_2 \dots \sigma_k$  is a decomposition of  $\pi$  as a product of disjoint cycles. Then the order of  $\pi$  equals the least common multiple of the lengths of the cycles  $\sigma_1, \dots, \sigma_k$ .

### **Examples**

• 
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$
.

The cycle decomposition is  $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)$  or  $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)(10)$ . It follows that  $o(\pi) = \operatorname{lcm}(7, 4) = \operatorname{lcm}(7, 4, 1) = 28$ .

• 
$$\sigma = (1 \ 2)(3 \ 4)(5 \ 6).$$

This permutation is a product of three disjoint transpositions. Therefore the order of  $\sigma$  equals lcm(2,2,2) = 2.

• 
$$\tau = (1 \ 2)(1 \ 3)(1 \ 4)(1 \ 5).$$

The permutation is given as a product of transpositions. However, the transpositions are not disjoint and so this representation does not help to find the order of  $\tau$ . The cycle decomposition is  $\tau = (5 \ 4 \ 3 \ 2 \ 1)$ . Hence  $\tau$  is a cycle of length 5 so that  $o(\tau) = 5$ .