MATH 433
Applied Algebra
Lecture 19:
Order and sign of a permutation. Alternating group.

Order of a permutation

Theorem Let π be a permutation. Then there is a positive integer m such that $\pi^{m}=\mathrm{id}$.

The order of a permutation π, denoted $o(\pi)$, is defined as the smallest positive integer m such that $\pi^{m}=\mathrm{id}$.

Theorem Let π be a permutation of order m. Then $\pi^{r}=\pi^{s}$ if and only if $r \equiv s \bmod m$. In particular, $\pi^{r}=\mathrm{id}$ if and only if r is divisible by m.

Theorem If a permutation π is a cycle, then the order $o(\pi)$ equals the length of the cycle.

Lemma 1 Let π and σ be two commuting permutations: $\pi \sigma=\sigma \pi$. Then
(i) the powers π^{r} and σ^{s} commute for all $r, s \in \mathbb{Z}$,
(ii) $(\pi \sigma)^{r}=\pi^{r} \sigma^{r}$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_{X}. Then (i) the powers π^{r} and σ^{s} are also disjoint,
(ii) $\pi^{r} \sigma^{s}=\mathrm{id}$ implies $\pi^{r}=\sigma^{s}=\mathrm{id}$.

Lemma 3 Let π and σ be disjoint permutations in S_{X}. Then
(i) they commute: $\pi \sigma=\sigma \pi$,
(ii) $(\pi \sigma)^{r}=\mathrm{id}$ if and only if $\pi^{r}=\sigma^{r}=\mathrm{id}$,
(iii) $o(\pi \sigma)=\operatorname{lcm}(o(\pi), o(\sigma))$.

Theorem Let $\pi \in S_{X}$ and suppose that $\pi=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ is a decomposition of π as a product of disjoint cycles. Then the order of π equals the least common multiple of the lengths of the cycles $\sigma_{1}, \ldots, \sigma_{k}$.

Examples

$$
\text { - } \pi=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8
\end{array}\right) .
$$

The cycle decomposition is $\pi=(1249375)(612811)$ or $\pi=(1249375)(612811)(10)$. It follows that $o(\pi)=\operatorname{lcm}(7,4)=\operatorname{lcm}(7,4,1)=28$.

- $\sigma=\left(\begin{array}{ll}1 & 2)(34)(56) .\end{array}\right.$

This permutation is a product of three disjoint transpositions. Therefore the order of σ equals $\operatorname{lcm}(2,2,2)=2$.

- $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{l}1\end{array}\right)(15)$.

The permutation is given as a product of transpositions. However, the transpositions are not disjoint and so this representation does not help to find the order of τ. The cycle decomposition is $\tau=\left(\begin{array}{l}5 \\ 4\end{array} 321\right)$. Hence τ is a cycle of length 5 so that $o(\tau)=5$.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \geq 2$ elements is a product of transpositions. (ii) If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}=\tau_{1}^{\prime} \tau_{2}^{\prime} \ldots \tau_{m}^{\prime}$, where $\tau_{i}, \tau_{j}^{\prime}$ are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even number of transpositions, and odd if it is a product of an odd number of transpositions.
The $\boldsymbol{\operatorname { s i g n }} \operatorname{sgn}(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_{X}$.
(ii) $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$ for any $\pi \in S_{X}$.
(iii) $\operatorname{sgn}(\mathrm{id})=1$.
(iv) $\operatorname{sgn}(\tau)=-1$ for any transposition τ.
(v) $\operatorname{sgn}(\sigma)=(-1)^{r-1}$ for any cycle σ of length r.

Examples

- $\pi=\left(\begin{array}{cccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8\end{array}\right)$.

First we decompose π into a product of disjoint cycles:

$$
\pi=(124937 \text { 5)(6 } 128 \text { 11). }
$$

The cycle $\sigma_{1}=(1249375)$ has length 7 , hence it is an even permutation. The cycle $\sigma_{2}=\left(\begin{array}{ll}612811)\end{array}\right.$ has length 4, hence it is an odd permutation. Then

$$
\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\sigma_{1} \sigma_{2}\right)=\operatorname{sgn}\left(\sigma_{1}\right) \operatorname{sgn}\left(\sigma_{2}\right)=1 \cdot(-1)=-1
$$

- $\pi=\left(\begin{array}{ll}2 & 4\end{array}\right)(12)(234)$.
π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1 . Even though the cycles are not disjoint, $\operatorname{sgn}(\pi)=1 \cdot(-1) \cdot 1=-1$.

Alternating group

Given an integer $n \geq 2$, the alternating group on n symbols, denoted A_{n} or $A(n)$, is the set of all even permutations in the symmetric group $S(n)$.

Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi \sigma$ is also in $A(n)$.
(ii) The identity function id is in $A(n)$.
(iii) For any permutation $\pi \in A(n)$, the inverse π^{-1} is in $A(n)$.

Theorem The alternating group $A(n)$ has $n!/ 2$ elements.
Proof: Consider a function $F: S(n) \rightarrow S(n)$ given by
 Hence $|F(E)|=|E|$ for any set $E \subset S(n)$. We observe that $F(A(n)) \subset S(n) \backslash A(n)$ and $F(S(n) \backslash A(n)) \subset A(n)$. Therefore $|A(n)| \leq|S(n) \backslash A(n)|$ and $|S(n) \backslash A(n)| \leq|A(n)|$ so that $|A(n)|=|S(n) \backslash A(n)|=|S(n)| / 2=n!/ 2$.

Examples. - The alternating group $A(3)$ has 3 elements: the identity function and two cycles of length 3, (1 2 3) and (1 32).

- The alternating group $A(4)$ has 12 elements of the following cycle shapes: id, (123), and (1 2) (3 4).
- The alternating group $A(5)$ has 60 elements of the following cycle shapes: id, (1 23), (12)(34), and (1 2345).

