MATH 433 Applied Algebra

Lecture 19: Order and sign of a permutation. Alternating group.

Order of a permutation

Theorem Let π be a permutation. Then there is a positive integer *m* such that $\pi^m = id$.

The **order** of a permutation π , denoted $o(\pi)$, is defined as the smallest positive integer m such that $\pi^m = \text{id.}$

Theorem Let π be a permutation of order m. Then $\pi^r = \pi^s$ if and only if $r \equiv s \mod m$. In particular, $\pi^r = \text{id}$ if and only if r is divisible by m.

Theorem If a permutation π is a cycle, then the order $o(\pi)$ equals the length of the cycle.

Lemma 1 Let π and σ be two commuting permutations: $\pi\sigma = \sigma\pi$. Then (i) the powers π^r and σ^s commute for all $r, s \in \mathbb{Z}$, (ii) $(\pi\sigma)^r = \pi^r \sigma^r$ for all $r \in \mathbb{Z}$.

Lemma 2 Let π and σ be disjoint permutations in S_X . Then (i) the powers π^r and σ^s are also disjoint, (ii) $\pi^r \sigma^s = \operatorname{id}$ implies $\pi^r = \sigma^s = \operatorname{id}$.

Lemma 3 Let π and σ be disjoint permutations in S_X . Then (i) they commute: $\pi \sigma = \sigma \pi$, (ii) $(\pi \sigma)^r = \operatorname{id}$ if and only if $\pi^r = \sigma^r = \operatorname{id}$, (iii) $o(\pi \sigma) = \operatorname{lcm}(o(\pi), o(\sigma))$.

Theorem Let $\pi \in S_X$ and suppose that $\pi = \sigma_1 \sigma_2 \dots \sigma_k$ is a decomposition of π as a product of disjoint cycles. Then the order of π equals the least common multiple of the lengths of the cycles $\sigma_1, \dots, \sigma_k$.

Examples

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$
.

The cycle decomposition is $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)$ or $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11)(10)$. It follows that $o(\pi) = \operatorname{lcm}(7, 4) = \operatorname{lcm}(7, 4, 1) = 28$.

•
$$\sigma = (1 \ 2)(3 \ 4)(5 \ 6).$$

This permutation is a product of three disjoint transpositions. Therefore the order of σ equals lcm(2,2,2) = 2.

•
$$\tau = (1 \ 2)(1 \ 3)(1 \ 4)(1 \ 5).$$

The permutation is given as a product of transpositions. However, the transpositions are not disjoint and so this representation does not help to find the order of τ . The cycle decomposition is $\tau = (5 \ 4 \ 3 \ 2 \ 1)$. Hence τ is a cycle of length 5 so that $o(\tau) = 5$.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \ge 2$ elements is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_k = \tau'_1 \tau'_2 \dots \tau'_m$, where τ_i, τ'_j are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The sign $sgn(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_X$. **(ii)** $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S_X$. **(iii)** $\operatorname{sgn}(\operatorname{id}) = 1$. **(iv)** $\operatorname{sgn}(\tau) = -1$ for any transposition τ . **(v)** $\operatorname{sgn}(\sigma) = (-1)^{r-1}$ for any cycle σ of length r.

Examples

•
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 4 & 7 & 9 & 1 & 12 & 5 & 11 & 3 & 10 & 6 & 8 \end{pmatrix}$$
.

First we decompose π into a product of disjoint cycles:

 $\pi = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)(6 \ 12 \ 8 \ 11).$

The cycle $\sigma_1 = (1 \ 2 \ 4 \ 9 \ 3 \ 7 \ 5)$ has length 7, hence it is an even permutation. The cycle $\sigma_2 = (6 \ 12 \ 8 \ 11)$ has length 4, hence it is an odd permutation. Then

$$\operatorname{sgn}(\pi) = \operatorname{sgn}(\sigma_1 \sigma_2) = \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) = 1 \cdot (-1) = -1.$$

•
$$\pi = (2 \ 4 \ 3)(1 \ 2)(2 \ 3 \ 4).$$

 π is represented as a product of cycles. The transposition has sign -1 while the cycles of length 3 have sign +1. Even though the cycles are not disjoint, $sgn(\pi) = 1 \cdot (-1) \cdot 1 = -1$.

Alternating group

Given an integer $n \ge 2$, the **alternating group** on *n* symbols, denoted A_n or A(n), is the set of all even permutations in the symmetric group S(n).

Theorem (i) For any two permutations $\pi, \sigma \in A(n)$, the product $\pi\sigma$ is also in A(n). (ii) The identity function id is in A(n). (iii) For any permutation $\pi \in A(n)$, the inverse π^{-1} is in A(n).

Theorem The alternating group A(n) has n!/2 elements.

Proof: Consider a function $F : S(n) \to S(n)$ given by $F(\pi) = (1 \ 2)\pi$. Note that F is bijective (indeed, $F^{-1} = F$). Hence |F(E)| = |E| for any set $E \subset S(n)$. We observe that $F(A(n)) \subset S(n) \setminus A(n)$ and $F(S(n) \setminus A(n)) \subset A(n)$. Therefore $|A(n)| \le |S(n) \setminus A(n)|$ and $|S(n) \setminus A(n)| \le |A(n)|$ so that $|A(n)| = |S(n) \setminus A(n)| = |S(n)|/2 = n!/2$. *Examples.* • The alternating group A(3) has 3 elements: the identity function and two cycles of length 3, $(1 \ 2 \ 3)$ and $(1 \ 3 \ 2)$.

• The alternating group A(4) has 12 elements of the following **cycle shapes**: id, (1 2 3), and (1 2)(3 4).

• The alternating group A(5) has 60 elements of the following cycle shapes: id, $(1 \ 2 \ 3)$, $(1 \ 2)(3 \ 4)$, and $(1 \ 2 \ 3 \ 4 \ 5)$.