MATH 433 Applied Algebra

Lecture 20: Sign of a permutation (continued). Classical definition of the determinant.

Sign of a permutation

Theorem 1 (i) Any permutation of $n \ge 2$ elements is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_k = \tau'_1 \tau'_2 \dots \tau'_m$, where τ_i, τ'_j are transpositions, then the numbers k and m are of the same parity (that is, both even or both odd).

A permutation π is called **even** if it is a product of an even number of transpositions, and **odd** if it is a product of an odd number of transpositions.

The sign $sgn(\pi)$ of the permutation π is defined to be +1 if π is even, and -1 if π is odd.

Theorem 2 (i) $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$ for any $\pi, \sigma \in S_X$. **(ii)** $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$ for any $\pi \in S_X$. **(iii)** $\operatorname{sgn}(\operatorname{id}) = 1$. **(iv)** $\operatorname{sgn}(\tau) = -1$ for any transposition τ . **(v)** $\operatorname{sgn}(\sigma) = (-1)^{r-1}$ for any cycle σ of length r. Let $\pi \in S(n)$ and i, j be integers, $1 \le i < j \le n$. We say that the permutation π preserves order of the pair (i, j) if $\pi(i) < \pi(j)$. Otherwise π makes an **inversion**. Denote by $N(\pi)$ the number of inversions made by the permutation π .

Lemma 1 Let $\tau, \pi \in S(n)$ and suppose that τ is an adjacent transposition, $\tau = (k \ k+1)$. Then $|N(\tau\pi) - N(\pi)| = 1$.

Proof: For every pair (i, j), $1 \le i < j \le n$, let us compare the order of pairs $\pi(i), \pi(j)$ and $\tau\pi(i), \tau\pi(j)$. We observe that the order differs exactly for one pair, when $\{\pi(i), \pi(j)\} = \{k, k+1\}$. The lemma follows.

Lemma 2 Let $\pi \in S(n)$ and $\tau_1, \tau_2, \ldots, \tau_k$ be adjacent transpositions. Then (i) for any $\pi \in S(n)$ the numbers k and $N(\tau_1\tau_2\ldots\tau_k\pi) - N(\pi)$ are of the same parity, (ii) the numbers k and $N(\tau_1\tau_2\ldots\tau_k)$ are of the same parity. Sketch of the proof: (i) follows from Lemma 1 by induction on k. (ii) is a particular case of part (i), when $\pi = \text{id.}$

Lemma 3 (i) Any cycle of length r is a product of r-1 transpositions. **(ii)** Any transposition is a product of an odd number of adjacent transpositions.

Proof: (i) $(x_1 x_2 \dots x_r) = (x_1 x_2)(x_2 x_3)(x_3 x_4) \dots (x_{r-1} x_r).$ (ii) $(k \ k+r) = \sigma^{-1}(k \ k+1)\sigma$, where $\sigma = (k+1 \ k+2 \dots \ k+r).$ By the above, $\sigma = (k+1 \ k+2)(k+2 \ k+3) \dots (k+r-1 \ k+r)$ and $\sigma^{-1} = (k+r \ k+r-1) \dots (k+3 \ k+2)(k+2 \ k+1).$

Theorem (i) Any permutation is a product of transpositions. (ii) If $\pi = \tau_1 \tau_2 \dots \tau_k$, where τ_i are transpositions, then the numbers k and $N(\pi)$ are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles. By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of $\tau_1, \tau_2, \ldots, \tau_k$ is a product of an odd number of adjacent transpositions. Hence $\pi = \tau'_1 \tau'_2 \ldots \tau'_m$, where τ'_i are adjacent transpositions and number *m* is of the same parity as *k*. By Lemma 2, *m* has the same parity as $N(\pi)$.

Classical definition of the determinant

Definition. det (a) = a,
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
,
 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

. . .

If
$$A = (a_{ij})$$
 is an $n \times n$ matrix then

$$\det A = \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1,\pi(1)} a_{2,\pi(2)} \dots a_{n,\pi(n)},$$

where π runs over all permutations of $\{1, 2, \ldots, n\}$.

Theorem det $A^T = \det A$.

Proof: Let $A = (a_{ij})_{1 \le i,j \le n}$. Then $A^T = (b_{ij})_{1 \le i,j \le n}$, where $b_{ij} = a_{ji}$. We have

det
$$A^T = \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) b_{1,\pi(1)} b_{2,\pi(2)} \dots b_{n,\pi(n)}$$

= $\sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{\pi(1),1} a_{\pi(2),2} \dots a_{\pi(n),n}$

$$= \sum_{\pi \in S(n)} \operatorname{sgn}(\pi) a_{1,\pi^{-1}(1)} a_{2,\pi^{-1}(2)} \dots a_{n,\pi^{-1}(n)}.$$

When π runs over all permutations of $\{1, 2, ..., n\}$, so does $\sigma = \pi^{-1}$. It follows that

$$\det A^{T} = \sum_{\sigma \in S(n)} \operatorname{sgn}(\sigma^{-1}) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)}$$
$$= \sum_{\sigma \in S(n)} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)} = \det A.$$

Theorem 1 Suppose A is a square matrix and B is obtained from A by exchanging two rows. Then $\det B = -\det A$.

Theorem 2 Suppose A is a square matrix and B is obtained from A by permuting its rows. Then $\det B = \det A$ if the permutation is even and $\det B = -\det A$ if the permutation is odd.

Proof: Let $A = (a_{ii})_{1 \le i, i \le n}$ be an $n \times n$ matrix. Suppose that a matrix B is obtained from A by permuting its rows according to a permutation $\sigma \in S(n)$. Then $B = (b_{ii})_{1 \le i, i \le n}$, where $b_{\sigma(i),i} = a_{ii}$. Equivalently, $b_{ii} = a_{\sigma^{-1}(i),i}$. We have det $B = \sum \operatorname{sgn}(\pi) b_{1,\pi(1)} b_{2,\pi(2)} \dots b_{n,\pi(n)}$ $\pi \in S(n)$ $= \sum \operatorname{sgn}(\pi) a_{\sigma^{-1}(1),\pi(1)} a_{\sigma^{-1}(2),\pi(2)} \dots a_{\sigma^{-1}(n),\pi(n)}$ $\pi \in S(n)$ $= \sum \operatorname{sgn}(\pi) a_{1,\pi\sigma(1)} a_{2,\pi\sigma(2)} \dots a_{n,\pi\sigma(n)}.$ $\pi \in S(n)$

When π runs over all permutations of $\{1, 2, ..., n\}$, so does $\tau = \pi \sigma$. It follows that

$$\det B = \sum_{\tau \in S(n)} \operatorname{sgn}(\tau \sigma^{-1}) a_{1,\tau(1)} a_{2,\tau(2)} \dots a_{n,\tau(n)}$$
$$= \operatorname{sgn}(\sigma^{-1}) \sum_{\tau \in S(n)} \operatorname{sgn}(\tau) a_{1,\tau(1)} a_{2,\tau(2)} \dots a_{n,\tau(n)} = \operatorname{sgn}(\sigma) \det A.$$

The Vandermonde determinant

Definition. The **Vandermonde determinant** is the determinant of the following matrix

$$V = egin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \ dots & dots & dots & dots & dots & dots \ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$
 ,

where $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Equivalently, $V = (a_{ij})_{1 \le i,j \le n}$, where $a_{ij} = x_i^{j-1}$.

Theorem

Corollary Consider a polynomial

$$p(x_1, x_2, \ldots, x_n) = \prod_{1 \leq i < j \leq n} (x_j - x_i).$$

Then

$$p(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}) = \operatorname{sgn}(\pi) p(x_1, x_2, \ldots, x_n)$$

for any permutation $\pi \in S(n)$.