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Lecture 20:

Sign of a permutation (continued).
Classical definition of the determinant.



Sign of a permutation

Theorem 1 (i) Any permutation of n ≥ 2 elements is a
product of transpositions. (ii) If π = τ1τ2 . . . τk = τ

′
1τ

′
2 . . . τ

′
m,

where τi , τ
′
j are transpositions, then the numbers k and m are

of the same parity (that is, both even or both odd).

A permutation π is called even if it is a product of an even
number of transpositions, and odd if it is a product of an odd
number of transpositions.

The sign sgn(π) of the permutation π is defined to be +1 if
π is even, and −1 if π is odd.

Theorem 2 (i) sgn(πσ) = sgn(π) sgn(σ) for any π, σ ∈ SX .
(ii) sgn(π−1) = sgn(π) for any π ∈ SX .
(iii) sgn(id) = 1.
(iv) sgn(τ) = −1 for any transposition τ .
(v) sgn(σ) = (−1)r−1 for any cycle σ of length r .



Let π ∈ S(n) and i , j be integers, 1 ≤ i < j ≤ n. We say
that the permutation π preserves order of the pair (i , j) if
π(i) < π(j). Otherwise π makes an inversion. Denote by
N(π) the number of inversions made by the permutation π.

Lemma 1 Let τ, π ∈ S(n) and suppose that τ is an adjacent
transposition, τ = (k k+1). Then |N(τπ)− N(π)| = 1.

Proof: For every pair (i , j), 1 ≤ i < j ≤ n, let us compare
the order of pairs π(i), π(j) and τπ(i), τπ(j). We observe
that the order differs exactly for one pair, when
{π(i), π(j)} = {k, k+1}. The lemma follows.

Lemma 2 Let π ∈ S(n) and τ1, τ2, . . . , τk be adjacent
transpositions. Then (i) for any π ∈ S(n) the numbers k
and N(τ1τ2 . . . τkπ)− N(π) are of the same parity,
(ii) the numbers k and N(τ1τ2 . . . τk) are of the same parity.

Sketch of the proof: (i) follows from Lemma 1 by induction
on k. (ii) is a particular case of part (i), when π = id.



Lemma 3 (i) Any cycle of length r is a product of r−1
transpositions. (ii) Any transposition is a product of an odd
number of adjacent transpositions.

Proof: (i) (x1 x2 . . . xr) = (x1 x2)(x2 x3)(x3 x4) . . . (xr−1 xr).

(ii) (k k+r) = σ
−1(k k+1)σ, where σ = (k+1 k+2 . . . k+r).

By the above, σ = (k+1 k+2)(k+2 k+3) . . . (k+r−1 k+r)
and σ

−1 = (k+r k+r−1) . . . (k+3 k+2)(k+2 k+1).

Theorem (i) Any permutation is a product of transpositions.
(ii) If π = τ1τ2 . . . τk , where τi are transpositions, then the
numbers k and N(π) are of the same parity.

Proof: (i) Any permutation is a product of disjoint cycles.
By Lemma 3, any cycle is a product of transpositions.

(ii) By Lemma 3, each of τ1, τ2, . . . , τk is a product of an
odd number of adjacent transpositions. Hence π= τ

′
1τ

′
2 . . . τ

′
m,

where τ
′
i are adjacent transpositions and number m is of the

same parity as k. By Lemma 2, m has the same parity as N(π).



Classical definition of the determinant

Definition. det (a) = a,
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= a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32.

If A = (aij) is an n×n matrix then

detA =
∑

π∈S(n)

sgn(π) a1,π(1) a2,π(2) . . . an,π(n),

where π runs over all permutations of {1, 2, . . . , n}.



Theorem detAT = detA.

Proof: Let A = (aij)1≤i ,j≤n. Then AT = (bij)1≤i ,j≤n, where
bij = aji . We have

detAT =
∑

π∈S(n)

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈S(n)

sgn(π) aπ(1),1 aπ(2),2 . . . aπ(n),n

=
∑

π∈S(n)

sgn(π) a1,π−1(1) a2,π−1(2) . . . an,π−1(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
σ = π

−1. It follows that

detAT =
∑

σ∈S(n)

sgn(σ−1) a1,σ(1) a2,σ(2) . . . an,σ(n)

=
∑

σ∈S(n)

sgn(σ) a1,σ(1) a2,σ(2) . . . an,σ(n) = detA.



Theorem 1 Suppose A is a square matrix and B is
obtained from A by exchanging two rows. Then

detB = − detA.

Theorem 2 Suppose A is a square matrix and B is

obtained from A by permuting its rows. Then
detB = detA if the permutation is even and

detB = − detA if the permutation is odd.



Proof: Let A = (aij)1≤i ,j≤n be an n×n matrix. Suppose that
a matrix B is obtained from A by permuting its rows according
to a permutation σ ∈ S(n). Then B = (bij)1≤i ,j≤n, where
bσ(i),j = aij . Equivalently, bij = aσ−1(i),j . We have

detB =
∑

π∈S(n)

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈S(n)

sgn(π) aσ−1(1),π(1) aσ−1(2),π(2) . . . aσ−1(n),π(n)

=
∑

π∈S(n)

sgn(π) a1,πσ(1) a2,πσ(2) . . . an,πσ(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
τ = πσ. It follows that

detB =
∑

τ∈S(n)

sgn(τσ−1) a1,τ(1) a2,τ(2) . . . an,τ(n)

= sgn(σ−1)
∑

τ∈S(n)

sgn(τ) a1,τ(1) a2,τ(2) . . . an,τ(n) = sgn(σ) detA.



The Vandermonde determinant

Definition. The Vandermonde determinant is

the determinant of the following matrix
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1 x1 x21 · · · xn−1
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1 x2 x22 · · · xn−1
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1 xn x2n · · · xn−1
n
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,

where x1, x2, . . . , xn ∈ R. Equivalently,
V = (aij)1≤i ,j≤n, where aij = x

j−1
i .
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1 x2 x22 · · · xn−1
2

1 x3 x23 · · · xn−1
3

...
...

... . . . ...

1 xn x2n · · · xn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤n

(xj − xi).

Corollary Consider a polynomial

p(x1, x2, . . . , xn) =
∏

1≤i<j≤n(xj − xi).

Then

p
(

xπ(1), xπ(2), . . . , xπ(n)
)

= sgn(π) p(x1, x2, . . . , xn)

for any permutation π ∈ S(n).


