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Semigroups

Definition. A semigroup is a nonempty set S , together with
a binary operation ∗, that satisfies the following axioms:

(S1: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S2: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S3: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Optional useful properties of semigroups:

(S4: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S5: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Examples of semigroups

• Clearly, any group is also a semigroup and a monoid.

• Real numbers R with multiplication (commutative monoid).

• Positive integers with addition (commutative semigroup
with cancellation).

• Positive integers with multiplication (commutative monoid
with cancellation).

• Zn, congruence classes modulo n, with multiplication
(commutative monoid).

• Given a nonempty set X , all functions f : X → X with
composition (monoid).

• All injective functions f : X → X with composition
(monoid with left cancellation: g ◦ f1 = g ◦ f2 =⇒ f1 = f2).

• All surjective functions f : X → X with composition
(monoid with right cancellation: f1 ◦ g = f2 ◦ g =⇒ f1 = f2).



Examples of semigroups

• All n×n matrices with multiplication (monoid).

• All n×n matrices with integer entries, with multiplication
(monoid).

• Invertible n×n matrices, with multiplication (group).

• Invertible n×n matrices with integer entries, with
multiplication (monoid with cancellation).

• All subsets of a set X with the operation of union
(commutative monoid).

• All subsets of a set X with the operation of intersection
(commutative monoid).

• Positive integers with the operation a ∗ b = max(a, b)
(commutative monoid).

• Positive integers with the operation a ∗ b = min(a, b)
(commutative semigroup).



Examples of semigroups

• Given a finite alphabet X , the set X ∗ of all finite

words in X with the operation of concatenation.

If w1 = a1a2 . . . an and w2 = b1b2 . . . bk , then
w1w2 = a1a2 . . . anb1b2 . . . bk . This is a monoid with
cancellation. The identity element is the empty word.

• The set S(X ) of all automaton transformations

over an alphabet X with composition.

Any transducer automaton with the input/output alphabet X
generates a transformation f : X ∗ → X ∗ by the rule
f (input-word) = output-word. It turns out that the
composition of two transformations generated by finite state
automata can also be generated by a finite state automaton.



Powers of an element in a semigroup

Suppose S is a semigroup. Let us use multiplicative notation
for the operation on S . The powers of an element g ∈ S are
defined inductively:

g 1 = g and g k+1 = g kg for every integer k ≥ 1.

Theorem Let g be an element of a semigroup G and
r , s ∈ Z, r , s > 0. Then (i) g rg s = g r+s , (ii) (g r)s = g rs .

Proof: Both formulas are proved by induction on s.
(i) The base case s = 1 follows from the definition:
g rg 1 = g rg = g r+1. The induction step relies on associativity.
Assume that g rg s = g r+s for some value of s (and all r).
Then g rg s+1 = g r(g sg) = (g rg s)g = g r+sg = g r+(s+1).
(ii) The base case s = 1 is trivial: (g r)1 = g r = g r ·1. The
induction step relies on (i), which has already been proved.
Assume that (g r)s = g rs for some value of s and all r . Then
(g r)s+1 = (g r)sg r = g rsg r = g rs+r = g r(s+1).



Theorem Any finite semigroup with cancellation

is, in fact, a group.

Lemma If S is a finite semigroup with
cancellation, then for any s ∈ S there exists an

integer k ≥ 2 such that sk = s.

Proof: Since S is finite, the sequence s, s2, s3, . . . contains
repetitions. Hence sk = sm for some k and m such that
k > m ≥ 1. If m = 1 then we are done. If m > 1 then
sm−1sk−m+1 = sm−1s. After cancellation, sk−m+1 = s.

Proof of the theorem: Take any s ∈ S . By Lemma, we have
sk = s for some k ≥ 2. Let us show that e = sk−1 is the
identity element. Indeed, for any g ∈ S we have skg = sg

or, equivalently, s(eg) = sg . After cancellation, eg = g .
Similarly, ge = g for all g ∈ S . Finally, for any g ∈ S there
is n ≥ 2 such that g n = g = ge. Then g n−1 = e, which
implies that g n−2 = g−1.



From a semigroup to a group

Question. When a semigroup S can be extended
to a group?

Necessary conditions are cancellation laws since

they hold in any group. In general, they are not
sufficient.

Theorem If S is a commutative semigroup with

cancellation, then it can be extended to an abelian
group G such that any element g ∈ G is of the

form g = b−1a, where a, b ∈ S .

The group G is called the group of fractions of
the semigroup S .


