MATH 433
Applied Algebra
Lecture 26:
Review for Exam 2.

Topics for Exam 2

- Relations, properties of relations
- Finite state machines, automata
- Permutations
- Cycles, transpositions
- Cycle decomposition of a permutation
- Order of a permutation
- Sign of a permutation
- Symmetric and alternating groups
- Abstract groups (definition and examples)
- Basic properties of groups
- Semigroups
- Rings, zero-divisors
- Basic properties of rings
- Fields, characteristic of a field
- Vector spaces over a field

What you are supposed to remember

On permutations:

- Definition of a permutation, a cycle, and a transposition
- Theorem on cycle decomposition
- Definition of the order of a permutation
- How to find the order for a product of disjoint cycles
- Definition of even and odd permutations
- How to find the sign for a product of cycles

On algebraic structures:

- Definition of a group
- Definition of a semigroup
- Definition of a monoid
- Definition of a ring
- Definition of an integral domain
- Definition of a field
- Definition of a vector space over a field

Sample problems

Problem 1. Let R be a relation defined on the set of positive integers by $x R y$ if and only if $\operatorname{gcd}(x, y) \neq 1$ ("is not coprime with"). Is this relation reflexive? Symmetric? Transitive?

Problem 2. A Moore diagram below depicts a 3-state acceptor automaton over the alphabet $\{a, b\}$ which accepts those input words that do not contain a subword $a b$ (and rejects any input word containing a subword $a b$). Prove that no 2 -state automaton can perform the same task.

Sample problems

Problem 3. List all cycles of length 3 in the symmetric group $S(4)$. Make sure there are no repetitions in your list.

Problem 4. Write the permutation $\pi=\left(\begin{array}{ll}4 & 5\end{array}\right)(345)(123)$ as a product of disjoint cycles.

Problem 5. Find the order and the sign of the permutation $\sigma=(12)(3456)(1234)(56)$.

Problem 6. What is the largest possible order of an element of the alternating group $A(10)$?

Sample problems

Problem 7. Consider the operation $*$ defined on the set \mathbb{Z} of integers by $a * b=a+b-2$. Does this operation provide the integers with a group structure?

Problem 8. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

Sample problems

Problem 9. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
{[0]} & {[0]} \\
{[0]} & {[0]}
\end{array}\right), \quad B=\left(\begin{array}{cc}
{[1]} & {[0]} \\
{[0]} & {[1]}
\end{array}\right), \\
& C=\left(\begin{array}{cc}
{[1]} & {[1]} \\
{[1]} & {[0]}
\end{array}\right), \quad D=\left(\begin{array}{cc}
{[0]} & {[1]} \\
{[1]} & {[1]}
\end{array}\right) .
\end{aligned}
$$

Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

Problem 10. For any $\lambda \in \mathbb{Q}$ and any $v \in \mathbb{Z}$ let $\lambda \odot v=\lambda v$ if λv is an integer and $\lambda \odot v=v$ otherwise. Does this "selective scaling" make the additive Abelian group \mathbb{Z} into a vector space over the field \mathbb{Q} ?

Problem 1. Let R be a relation defined on the set of positive integers by $x R y$ if and only if $\operatorname{gcd}(x, y) \neq 1$ ("is not coprime with"). Is this relation reflexive? Symmetric? Transitive?

The relation R is not reflexive since 1 is not related to itself (actually, this is the only positive integer not related to itself by R).
The relation is symmetric since $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x)$ for all $x, y \in \mathbb{P}$.

The relation is not transitive as the following counterexample shows: $2 R 6$ and $6 R 3$, but 2 is not related to 3 by R.

Problem 2. A Moore diagram below depicts a 3-state acceptor automaton over the alphabet $\{a, b\}$ which accepts those input words that do not contain a subword $a b$. Prove that no 2-state automaton can perform the same task.

Assume the contrary: there is an automaton with two states 0 (initial) and 1 that does the job. We are going to reconstruct its transition function t.
Claim 1: $t(0, a)=1$. Otherwise $t(0, a)=0$, then we would not be able to distinguish inputs b and $a b$.
Claim 2: $t(0, b)=0$. Otherwise $t(0, b)=1$, then we would not be able to tell the input $b b$ from $a b$.
Claim 3: $t(1, a)=1$ (otherwise we would not tell b from $a a b$).
Claim 4: $t(1, b)=0$ (otherwise we would not tell aa from $a b$).
We still cannot distinguish $b b$ from $a b$, a contradiction anyway.

Problem 3. List all cycles of length 3 in the symmetric group $S(4)$. Make sure there are no repetitions in your list.

Any cycle of length 3 in $S(4)$ moves 3 elements and fixes the remaining one. Therefore there are 4 ways to choose three elements a, b, c moved by such a cycle. For any choice of these, there are two cycles of length 3 moving a, b, c, each written in three different ways: $(a b c)=(b c a)=(c a b)$ and $(a c b)=(b a c)=\left(\begin{array}{cc}c & b\end{array}\right)$.
The list: (1 2 3), (1 3 2), (1 24 4), (1 4 2), (1 34 4), (143), (2 3 4), (2 4 3).

Problem 4. Write the permutation $\pi=\left(\begin{array}{ll}4 & 5\end{array}\right)(345)(123)$ as a product of disjoint cycles.

Keeping in mind that the composition is evaluated from the right to the left, we find that $\pi(1)=2, \pi(2)=5, \pi(5)=3$, and $\pi(3)=1$. Further, $\pi(4)=6$ and $\pi(6)=4$.
Thus $\pi=\left(\begin{array}{ll}1 & 2\end{array} 5\right.$ 3)(46).
Problem 5. Find the order and the sign of the permutation $\sigma=(12)(3456)(1234)(56)$.

First we find the cycle decomposition of the given permutation: $\sigma=(24)(35)$. It follows that the order of σ is 2 and that σ is an even permutation. Therefore the sign of σ is +1 .

Problem 6. What is the largest possible order of an element of the alternating group $A(10)$?

The order of a permutation π is $o(\pi)=\operatorname{lcm}\left(l_{1}, l_{2}, \ldots, I_{k}\right)$, where I_{1}, \ldots, I_{k} are lengths of cycles in the disjoint cycle decomposition of π.
The largest order for $\pi \in A(10)$, an even permutation of 10 elements, is 21 . It is attained when π is the product of disjoint cycles of lengths 7 and 3 , for example, $\pi=(1234567)(8910)$. One can check that in all other cases the order is at most 15 .

Remark. The largest order for $\pi \in S(10)$ is $30=5 \cdot 3 \cdot 2$, but it is attained on odd permutations, e.g., $\pi=(12345)(678)(910)$.

Problem 7. Consider the operation $*$ defined on the set \mathbb{Z} of integers by $a * b=a+b-2$. Does this operation provide the integers with a group structure?
We need to check 4 axioms.
Closure: $a, b \in \mathbb{Z} \Longrightarrow a * b=a+b-2 \in \mathbb{Z}$.
Associativity: for any $a, b, c \in \mathbb{Z}$, we have
$(a * b) * c=(a+b-2) * c=(a+b-2)+c-2=a+b+c-4$,
$a *(b * c)=a *(b+c-2)=a+(b+c-2)-2=a+b+c-4$, hence $(a * b) * c=a *(b * c)$.
Existence of identity: equalities $a * e=e * a=a$ are equivalent to $e+a-2=a$. They hold for $e=2$.
Existence of inverse: equalities $a * b=b * a=e$ are equivalent to $b+a-2=e(=2)$. They hold for $b=4-a$.
Thus $(\mathbb{Z}, *)$ is a group.
Remark. Consider a bijection $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(a)=a-2$.
Then $f(a * b)=f(a)+f(b)$ for all $a, b \in \mathbb{Z}$.

Problem 8. Let M be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}n & k \\ 0 & n\end{array}\right)$, where n and k are rational numbers. Under the operations of matrix addition and multiplication, does this set form a ring? Does M form a field?

The set M is closed under matrix addition, taking the negative, and matrix multiplication as

$$
\begin{aligned}
& \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)+\left(\begin{array}{cc}
n^{\prime} & k^{\prime} \\
0 & n^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
n+n^{\prime} & k+k^{\prime} \\
0 & n+n^{\prime}
\end{array}\right), \\
- & \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
-n & -k \\
0 & -n
\end{array}\right), \\
& \left(\begin{array}{ll}
n & k \\
0 & n
\end{array}\right)\left(\begin{array}{cc}
n^{\prime} & k^{\prime} \\
0 & n^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
n n^{\prime} & n k^{\prime}+k n^{\prime} \\
0 & n n^{\prime}
\end{array}\right) .
\end{aligned}
$$

Also, the multiplication is commutative on M. The associativity and commutativity of the addition, the associativity of the multiplication, and the distributive law hold on M since they hold for all 2×2 matrices. Thus M is a commutative ring.

The ring M has the unity $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, the identity matrix. If a matrix $A \in M$ is invertible in the ring M and B is its inverse, then $A B=B A=l$. It follows that a matrix $A \in M$ is invertible in the ring M if and only if it is invertible in the sense of linear algebra and, moreover, the inverse matrix A^{-1} belongs to M.
A matrix $\left(\begin{array}{cc}n & k \\ 0 & n\end{array}\right) \in M$ is invertible if $n \neq 0$, in which case

$$
\left(\begin{array}{cc}
n & k \\
0 & n
\end{array}\right)^{-1}=\frac{1}{n^{2}}\left(\begin{array}{cc}
n & -k \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
n^{-1} & -k n^{-2} \\
0 & n^{-1}
\end{array}\right) \in M
$$

Since a nonzero matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M$ is not invertible, the ring M is not a field.

Problem 9. Let L be the set of the following 2×2 matrices with entries from the field \mathbb{Z}_{2} :
$A=\left(\begin{array}{cc}{[0]} & {[0]} \\ {[0]} & {[0]}\end{array}\right), \quad B=\left(\begin{array}{cc}{[1]} & {[0]} \\ {[0]} & {[1]}\end{array}\right), \quad C=\left(\begin{array}{cc}{[1]} & {[1]} \\ {[1]} & {[0]}\end{array}\right), \quad D=\left(\begin{array}{cc}{[0]} & {[1]} \\ {[1]} & {[1]}\end{array}\right)$.
Under the operations of matrix addition and multiplication, does this set form a ring? Does L form a field?

First we build the addition and mutiplication tables for L (meanwhile checking that L is closed under both operations):

+	A	B	C	D
A	A	B	C	D
B	B	A	D	C
C	C	D	A	B
D	D	C	B	A

\times	A	B	C	D
A	A	A	A	A
B	A	B	C	D
C	A	C	D	B
D	A	D	B	C

Analyzing these tables, we find that both operations are commutative on L, A is the additive identity element, and B is the multiplicative identity element. Also, $B^{-1}=B, C^{-1}=D$, $D^{-1}=C$, and $-X=X$ for all $X \in L$. The associativity of addition and multiplication as well as the distributive law hold on L since they hold for all 2×2 matrices. Thus L is a field.

Problem 10. For any $\lambda \in \mathbb{Q}$ and any $v \in \mathbb{Z}$ let $\lambda \odot v=\lambda v$ if λv is an integer and $\lambda \odot v=v$ otherwise.
Does this "selective scaling" make the additive Abelian group \mathbb{Z} into a vector space over the field \mathbb{Q} ?

The group $(\mathbb{Z},+)$ with the scalar multiplication \odot is not a vector space over \mathbb{Q}. One reason is that the distributive law $(\lambda+\mu) \odot v=\lambda \odot v+\mu \odot v$ does not hold.
A counterexample is $\lambda=\mu=1 / 2$ and $v=1$. Then $\left(\frac{1}{2}+\frac{1}{2}\right) \odot v=1 \odot v=v=1$ while $\frac{1}{2} \odot v+\frac{1}{2} \odot v=v+v=2$.

Remark. The essential information about the scalar multiplication \odot used in the above counterexample is that $1 \odot v=v$ and $\frac{1}{2} \odot v$ is an integer. It follows that the additive group \mathbb{Z}, in principle, cannot be made into a vector space over \mathbb{Q}.

