MATH 433

Applied Algebra

Lecture 29:

Cosets.

Lagrange's Theorem.

Cosets

Definition. Let H be a subgroup of a group G. A **coset** (or **left coset**) of the subgroup H in G is a set of the form $aH = \{ah : h \in H\}$, where $a \in G$. Similarly, a **right coset** of H in G is a set of the form $Ha = \{ha : h \in H\}$, where $a \in G$.

Theorem Let H be a subgroup of G and define a relation R on G by $aRb \iff a \in bH$. Then R is an equivalence relation.

Proof: We have aRb if and only if $b^{-1}a \in H$.

Reflexivity: aRa since $a^{-1}a = e \in H$.

Symmetry: $aRb \implies b^{-1}a \in H \implies a^{-1}b = (b^{-1}a)^{-1} \in H$ $\implies bRa$. **Transitivity**: aRb and $bRc \implies b^{-1}a, c^{-1}b \in H$ $\implies c^{-1}a = (c^{-1}b)(b^{-1}a) \in H \implies aRc$.

Corollary The cosets of the subgroup H in G form a partition of the set G.

Proof: Since R is an equivalence relation, its equivalence classes partition the set G. Clearly, the equivalence class of g is gH.

Examples of cosets

• $G = \mathbb{Z}$, $H = n\mathbb{Z}$.

The coset of $a \in \mathbb{Z}$ is $[a]_n = a + n\mathbb{Z}$, the congruence class of a modulo n.

- $G = \mathbb{R}^3$, H is the plane x + 2y z = 0. H is a subgroup of G since it is a subspace. The coset of $(x_0, y_0, z_0) \in \mathbb{R}^3$ is the plane $x + 2y z = x_0 + 2y_0 z_0$ parallel to H.
- G = S(n), H = A(n). There are only 2 cosets, the set of even permutations A(n)

and the set of odd permutations $S(n) \setminus A(n)$.

- G is any group, H = G. There is only one coset, G.
 - G is any group, $H = \{e\}$.

Each element of G forms a separate coset.

Lagrange's Theorem

The number of elements in a group G is called the **order** of G and denoted o(G). Given a subgroup H of G, the number of cosets of H in G is called the **index** of H in G and denoted [G:H].

Theorem (Lagrange) If H is a subgroup of a finite group G, then $o(G) = [G : H] \cdot o(H)$. In particular, the order of H divides the order of G.

Proof: For any $a \in G$ define a function $f: H \to aH$ by f(h) = ah. By definition of aH, this function is surjective. Also, it is injective due to the left cancellation property: $f(h_1) = f(h_2) \implies ah_1 = ah_2 \implies h_1 = h_2$. Therefore f is bijective. It follows that the number of elements in the coset aH is the same as the order of the subgroup H. Since the cosets of H in G partition the set G, the theorem follows

Corollaries of Lagrange's Theorem

Corollary 1 If G is a finite group, then the order of any element $g \in G$ divides the order of G.

Proof: The order of $g \in G$ is the same as the order of the cyclic group $\langle g \rangle$, which is a subgroup of G.

Corollary 2 If G is a finite group, then $g^{o(G)} = e$ for all $g \in G$.

Proof: We have $g^n = e$ whenever n is a multiple of o(g). By Corollary 1, o(G) is a multiple of o(g) for all $g \in G$.

Corollaries of Lagrange's Theorem

Corollary 3 (Fermat's Little Theorem) If p is a prime number then $a^{p-1} \equiv 1 \mod p$ for any integer a that is not a multiple of p.

Proof: $a^{p-1} \equiv 1 \mod p$ means that $[a]_p^{p-1} = [1]_p$. a is not a multiple of p means that $[a]_p$ is in G_p , the multiplicative group of invertible congruence classes modulo p. It remains to recall that $o(G_p) = p - 1$ and apply Corollary 2.

Corollary 4 (Euler's Theorem) If n is a positive integer then $a^{\phi(n)} \equiv 1 \mod n$ for any integer a coprime with n.

Proof: $a^{\phi(n)} \equiv 1 \mod n$ means that $[a]_n^{\phi(n)} = [1]_n$. a is coprime with n means that the congruence class $[a]_n$ is in G_n . It remains to recall that $o(G_n) = \phi(n)$ and apply Corollary 2.

Corollary 5 Any group G of prime order p is cyclic.

Proof: Take any element $g \in G$ different from e. Then $o(g) \neq 1$, hence o(g) = p, and this is also the order of the cyclic subgroup $\langle g \rangle$. It follows that $\langle g \rangle = G$.

Corollary 6 Any group G of prime order has only two subgroups: the trivial subgroup and G itself.

Proof: If H is a subgroup of G then o(H) divides o(G). Since o(G) is prime, we have o(H) = 1 or o(H) = o(G). In the former case, H is trivial. In the latter case, H = G.

Corollary 7 The alternating group A(n), $n \ge 2$, consists of n!/2 elements.

Proof: Indeed, A(n) is a subgroup of index 2 in the symmetric group S(n). The latter consists of n! elements.

Theorem Let G be a cyclic group of finite order n. Then for any divisor d of n there exists a unique subgroup of G of order d, which is also cyclic.

Lemma Suppose that an element g has finite order m. Then for any integer $\ell \neq 0$ the power g^{ℓ} has order $m/\gcd(\ell, m)$. *Proof:* Let N be a positive integer. Then $(g^{\ell})^N = g^{\ell N}$.

Hence $(g^{\ell})^N = e$ if and only if ℓN is divisible by m. The

smallest number N with this property is $m/\gcd(\ell, m)$. *Proof of the theorem:* We have $G = \langle g \rangle$, where o(g) = n. a cyclic group $H = \langle g^{n/d} \rangle$ has order d. Now assume H' is another subgroup of G of order d. The group H' is cyclic since G is cyclic. We have $H' = \langle g^k \rangle$ for some $k \neq 0$. By Lemma, $o(g^k) = n/\gcd(k, n)$. On the know that gcd(k, n) = ak + bn for some $a, b \in \mathbb{Z}$. Then $g^{n/d} = g^{ak+bn} = g^{ka}g^{nb} = (g^k)^a(g^n)^b = (g^k)^a \in \langle g^k \rangle = H'.$ Hence $H = \langle g^{n/d} \rangle \subset H'$. But o(H) = o(H') = d. Thus H' = H.

Take any divisor d of n. By Lemma, $o(g^{n/d}) = d$. Therefore other hand, $o(g^k) = d$. It follows that gcd(k, n) = n/d. We