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Applied Algebra

Lecture 30:
Direct product of groups.
Quotient group.



Direct product of binary structures

Given nonempty sets G and H, the Cartesian product G x H
is the set of all ordered pairs (g, h) such that g € G and

h € H. Suppose % is a binary operation on G and * is a
binary operation on H. Then we can define a binary operation
e on G X H by

(&1, 1) ® (&2, h2) = (&1 * &2, 1 x h2).

Proposition 1 The operation e is fully (resp. uniquely, well)
defined if and only if both * and « are.

Proposition 2 The operation e is associative (resp.
commutative) if and only if both % and x are.

Proposition 3 A pair (eg, ey) is the identity element in

G x H if and only if e is the identity element in G and ey is
the identity element in H.

Proposition 4 (g’ H') = (g,h)™! in G x H if and only if
g =g linGand ¥ =h"1inH.



Direct product of groups

Given nonempty sets G and H, the Cartesian product G x H
is the set of all ordered pairs (g, h) such that g € G and

h € H. Suppose * is a binary operation on G and % is a
binary operation on H. Then we can define a binary operation
e on G X H by

(&1, M) ® (g2, h2) = (g1 * &2, 1 * ha).

Theorem The set G x H with the operation e is a group if
and only if both (G,*) and (H,x) are groups.

The group G x H is called the direct product of the groups
G and H. Usually the same notation (multiplicative or
additive) is used for all three groups:

(g1, h1)(g2, h2) = (8182, hih2) or
(&1, ) + (g2, h2) = (g1 + &2, 1 + ).

Similarly, we can define the direct product G; X G, x --- x G,
of any finite collection of groups Gy, G, ..., G,.



Example. 7, x Z3 (with addition in Z; and Z3).

The group consists of 6 elements. It is Abelian since Z, and
Zs are both Abelian. The identity element is ([0]2, [0]3)-
Let g = ([1]2, [1]s). Then 2g =g + g = ([0]2, [2]5),

3g = ([12, [0]s), 4g = ([0]2,[1]s). 5g = ([1]2,[2]s), and

6g = ([0]2,[0]3). It follows that Z, x Zs is a cyclic group,
Zz X Z3 = <g>

Theorem If g has finite order in a group G and h has finite
order in a group H, then (g, h) has finite order in G x H

equal to lem(o(g),o(h)).  [Hint: (g, h)" = (g", h").]

Theorem The direct product of nontrivial cyclic groups is
cyclic if and only if they are all finite and their orders are
pairwise coprime.

For example, groups Zsz X Zs, Z4 X Z1s, and Zy X Zs X Zq
are cyclic while groups Z4 x Zg, Zo X 7o X %3, Z3 X Z, and
Z. X 7, are not.



Quotient space

Let X be a nonempty set and ~ be an equivalence relation on
X. Given an element x € X, the equivalence class of x,
denoted [x]. or simply [x], is the set of all elements of X that
are equivalent (i.e., related by ~) to x:

[x]. ={y € X |y ~x}.

Theorem Equivalence classes of the relation ~ form a
partition of the set X.

The set of all equivalence classes of ~ is denoted X/~ and
called the quotient space (or factor space) of X by the
relation ~.

In the case when the set X carries some structure (algebraic,
geometric, analytic, etc.), this structure may (or may not)
induce an analogous structure on the quotient space X/~.



Examples of quotient spaces

e X =27, x~y ifand only if x =y mod n.

Equivalence class of an integer m is the congruence class
modulo n, [m|. = [m], = m+ nZ. The quotient space Z/~
is Zp,.

e X =G, agroup; x~ y ifand only if x € yH,
where H is a subgroup.

Equivalence class of an element g € G is the coset of the
subgroup H, [g]~ = gH. The quotient space G/~ is the set
of all cosets of H in G. In this example, the quotient space is
usually denoted G/H.

Remark. The first example is a particular case of the second,
when G =7 and H = nZ. Hence Z,=7Z/nZ.



Quotient group

Let G be a nonempty set with a binary operation x. Given
an equivalence relation ~ on G, we say that the relation ~ is
compatible with the operation * if for any g1, 4>, h1, h € G,

gi~& and hy ~ hy = gyxhy ~ g *h,.

If this is the case, we can define an operation on the quotient
space G/~ by [g]*[h] =[g*h] forall g,he G.
Compatibility is required so that the operation x is defined
uniquely: if [g'] = [g] and [H] = [h] then [g' x '] = [g * h].

If the operation x is associative (resp. commutative), then so
is x. If e is the identity element for %, then its equivalence
class [e] is the identity element for x. If h= g™ in (G,x),
then [h] = [g]™! in (G/~,%).

Thus, if (G, *) is a group then (G/~,x) is also a group
called the quotient group (or factor group). Moreover,

if the group (G, *) is Abelian then so is (G/~, ).



Question. When is an equivalence relation ~ on a group G
compatible with the operation?

Let G be a group and assume that an equivalence relation ~
on G is compatible with the operation (so that the quotient
space G/~ is also the quotient group). What can we derive
from this? For simplicity, let us use multiplicative notation.

Lemma 1 The equivalence class of the identity element is a
subgroup of G.

Proof. Let H = [e]. be the equivalence class of the identity
element e. We need to show that (i) e € H, (ii) h;,h. € H
= hhy€H, and (ii) he H = hleH

By reflexivity, e ~ e. Hence e € H. Further, if hy, h, € H,
then hy ~ e and h, ~ e. By compatibility, hih, ~ ee = e
so that hihy € H. Next, if h€ H then h~ e. Also,

h=! ~ h~'. By compatibility, hh=! ~ eh™!, thatis, e ~ h™1.
By symmetry, h™! ~ e so that h™! € H.



Lemma 2 Each equivalence class is a left coset of the
subgroup H = [e]..

Proof. We need to prove that [g]. = gH for all g € G. We
are going to show that gH C [g]. and [g]. C gH.

Suppose a € gH, thatis, a = gh for some h€ H. Then

g ~ g and h ~ e, which implies that gh ~ ge = g. Hence
a € [g].. Conversely, suppose a € [g].. We have
a=ea=(gg a=g(gta). Since gl~g!and a~g,
it follows that g7 la~ g7 lg =e. Hence g7'a € H so that
a=g(gta) e gH.

Lemma 3 Each equivalence class is a right coset of the
subgroup H = [e]..

Proof. Analogous to the proof of Lemma 2.

Definition. A subgroup H of a group G is called normal if

gH = Hg for all g € G, that is, each left coset of H is also a
right coset. Notation: H< G or H < G.



Quotient group

Question. When is an equivalence relation ~ on
a group G compatible with the operation?

Theorem Assume that the quotient space G/~ is
also the quotient group. Then

(i) H = [e]~, the equivalence class of the identity

element, is a subgroup of G,

(ii) [g]~ = gH for all g € G,

(iii)) G/~ = G/H,

(iv) the subgroup H is normal, which means that

gH = Hg for all g € G.

Theorem If H is a normal subgroup of a group G,
then G/H is indeed the quotient group.



