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Lecture 31:
Isomorphism of groups.

Classification of groups.



Homomorphism of groups

Definition. Let G and H be groups. A function
f : G → H is called a homomorphism of groups

if f (g1g2) = f (g1)f (g2) for all g1, g2 ∈ G .

Examples of homomorphisms:

• Residue modulo n of an integer.

For any k ∈ Z let f (k) = k mod n. Then f : Z → Zn is a
homomorphism of the group (Z,+) onto the group (Zn,+).

• Sign of a permutation.

The function sgn : S(n) → {−1, 1} is a homomorphism of the
symmetric group S(n) onto the multiplicative group {−1, 1}.



• Determinant of an invertible matrix.

The function det : GL(n,R) → R \ {0} is a homomorphism
of the general linear group GL(n,R) onto the multiplicative
group R \ {0}.

• Linear transformation.

Any vector space is an Abelian group with respect to vector
addition. If f : V1 → V2 is a linear transformation between
vector spaces, then f is also a homomorphism of groups.

• Trivial homomorphism.

Given groups G and H, we define f : G → H by f (g) = eH
for all g ∈ G , where eH is the identity element of H.

• Natural projection onto a quotient group.

Given a group G with a normal subgroup H, we define
f : G → G/H by f (g) = gH for all g ∈ G .



Properties of homomorphisms

Let f : G → H be a homomorphism of groups.

• The identity element eG in G is mapped to the
identity element eH in H .

f (eG ) = f (eGeG ) = f (eG )f (eG ). Also, f (eG ) = f (eG )eH .
By cancellation in H, we get f (eG ) = eH .

• f (g−1) = (f (g))−1 for all g ∈ G .

f (g)f (g−1) = f (gg−1) = f (eG ) = eH . Similarly,
f (g−1)f (g) = eH . Thus f (g−1) = (f (g))−1.

• f (g n) = (f (g))n for all g ∈ G and n ∈ Z.

• The order of f (g) divides the order of g .

Indeed, g n = eG =⇒ (f (g))n = eH for any n ∈ N.



Properties of homomorphisms

Let f : G → H be a homomorphism of groups.

• If K is a subgroup of G , then f (K ) is a

subgroup of H .

• If L is a subgroup of H , then f −1(L) is a
subgroup of G .

• If L is a normal subgroup of H , then f −1(L) is
a normal subgroup of G .

• f −1(eH) is a normal subgroup of G called the

kernel of f and denoted ker(f ).

Indeed, the trivial subgroup {eH} is always normal.



Isomorphism of groups
Definition. Let G and H be groups. A function f : G → H

is called an isomorphism of groups if it is bijective and
f (g1g2) = f (g1)f (g2) for all g1, g2 ∈ G . In other words, an
isomorphism is a bijective homomorphism.

The group G is said to be isomorphic to H if there exists an
isomorphism f : G → H. Notation: G ∼= H.

Theorem Isomorphism is an equivalence relation on groups.

Classification of groups consists of describing all equivalence
classes of this relation and placing every known group into an
appropriate class.

Theorem The following features of groups are preserved
under isomorphisms: (i) the number of elements, (ii) the
number of elements of a particular order, (iii) being Abelian,
(iv) being cyclic, (v) having a subgroup of a particular order
or particular index.



Examples of isomorphic groups

• (R,+) and (R+,×).

An isomorphism f : R → R+ is given by f (x) = ex .

• Any two cyclic groups 〈g〉 and 〈h〉 of the same order.

An isomorphism f : 〈g〉 → 〈h〉 is given by f (g n) = hn for all
n ∈ Z.

• Z6 and Z2 × Z3.

An isomorphism f : Z6 → Z2 × Z3 is given by f ([a]6) =
([a]2, [a]3). Alternatively, both groups are cyclic of order 6.

• D(3) and S(3).

The dihedral group D(3) consists of symmetries of an
equilateral triangle. Each symmetry permutes 3 vertices of
the triangle, which gives rise to an isomorphism with S(3).



Examples of isomorphic groups

• G × H ∼= H × G .

An isomorphism f : G × H → H × G is given by
f (g , h) = (h, g) for all g ∈ G and h ∈ H.

• If G1
∼= H1 and G2

∼= H2, then
G1 × G2

∼= H1 × H2.

If f1 :G1→H1 and f2 :G2→H2 are isomorphisms, then a map
f : G1 × G2 → H1 × H2 given by f (g1, g2) =

(

f1(g1), f2(g2)
)

for all g1 ∈ G1 and g2 ∈ G2 is also an isomorphism.

• Given a homomorphism f : G → H , the
quotient group G/ker f is isomorphic to f (G ).

An isomorphism φ :G/ker f → f (G ) is given by φ(gK )= f (g)
for any g ∈ G , where K = ker f , the kernel of f .



Examples of non-isomorphic groups

• S(3) and Z7.

S(3) has order 6 while Z7 has order 7.

• S(3) and Z6.

Z6 is Abelian while S(3) is not.

• Z4 and Z2 × Z2.

Z4 is cyclic while Z2 × Z2 is not.

• Z× Z and Q.

Z×Z is generated by two elements (1, 0) and (0, 1) while Q

cannot be generated by a finite set.



• (R,+) and (R \ {0},×).

(R \ {0},×) has an element of order 2, namely, −1. In
(R,+), every element different from 0 has infinite order.

• Z× Z3 and Z× Z.

Z× Z3 has an element of finite order different from the
identity element, e.g., (0, [1]3), while Z× Z does not.

• Z8, Z4 × Z2 and Z2 × Z2 × Z2.

Orders of elements in Z8: 1, 2, 4 and 8; in Z4 × Z2: 1, 2 and
4; in Z2 × Z2 × Z2: only 1 and 2.

• Z4 × Z4 × Z2 and Z4 × Z2 × Z2 × Z2.

Both groups have elements of order 1, 2 and 4. However,
Z4 × Z4 × Z2 has 23 − 1 = 7 elements of order 2 while
Z4 × Z2 × Z2 × Z2 has 24 − 1 = 15.



Classification of finitely generated Abelian groups

Theorem 1 Any finitely generated Abelian group is
isomorphic to a direct product of cyclic groups.

Theorem 2 Any nontrivial finite Abelian group is isomorphic
to a direct product of the form Zp

m1
1

× Zp
m2
2

× · · · × Zp
mr
r
,

where p1, p2, . . . , pr are prime numbers and m1,m2, . . . ,mr

are positive integers.

Theorem 3 Suppose that Zm × G ∼= Zn × H, where m, n
are positive integers and G ,H are finite groups. Then m = n

and G ∼= H.

Theorem 4 Suppose that

Zp
m1
1

× Zp
m2
2

× · · · × Zp
mr
r

∼= Zq
n1
1
× Zq

n2
2
× · · · × Zq

ns
s
,

where pi , qj are prime numbers and mi , nj are positive
integers. Then the lists pm1

1 , pm2

2 , . . . , pmr
r and

qn1
1
, qn2

2
, . . . , qns

s coincide up to rearranging their elements.



• Abelian groups of order 15.

The prime factorisation of 15 is 3 · 5. It follows from the
classification that any Abelian group of order 15 is isomorphic
to Z3 × Z5. In particular, all such groups are cyclic.

• Abelian groups of order 16.

Since 16 = 24, there are five different ways to represent 16 as
a product of prime powers (up to rearranging the factors):
16 = 24 = 23 · 2 = 22 · 22 = 22 · 2 · 2 = 2 · 2 · 2 · 2. It follows
from the classification that Abelian groups of order 16 form
five isomorphism classes represented by groups Z16, Z8 × Z2,
Z4 × Z4, Z4 × Z2 × Z2 and Z2 × Z2 × Z2 × Z2.

• Abelian groups of order 36.

There are four ways to decompose 36 as a product of prime
powers: 36 = 22 · 32 = 22 · 3 · 3 = 2 · 2 · 32 = 2 · 2 · 3 · 3.
By the classification, all Abelian groups of order 36 form
four isomorphism classes represented by Z4 × Z9 (the cyclic
group), Z4 ×Z3 ×Z3, Z2 ×Z2 ×Z9 and Z2 ×Z2 ×Z3 ×Z3.



Simple groups

Definition. A nontrivial group G is called simple if it has no
normal subgroups other than the trivial subgroup and G itself.

Examples.

• Cyclic group of a prime order.

• Alternating group A(n) for n ≥ 5.

Theorem (Jordan, Hölder) For any finite group G there
exists a sequence of subgroups H0 = {e} ⊳ H1 ⊳ . . . ⊳ Hk = G

such that Hi−1 is a normal subgroup of Hi and the quotient
group Hi/Hi−1 is simple. Moreover, the sequence of quotient
groups H1/H0, H2/H1, . . . ,Hk/Hk−1 is determined by G

uniquely up to isomorphism and rearranging the terms.

All finite simple groups are classified (up to isomorphism, there
are 18 infinite families and 26 sporadic groups). The largest
sporadic group (monster group) has order ≈ 8× 1053.


