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Lecture 36:
Euclidean algorithm for polynomials.

Factorisation of polynomials.



Greatest common divisor of polynomials

Definition. Given non-zero polynomials f , g ∈ F[x ], a
greatest common divisor gcd(f , g) is a polynomial over the
field F such that (i) gcd(f , g) divides f and g , and (ii) if any
p ∈ F[x ] divides both f and g , then it divides gcd(f , g) as
well.

Theorem (Bezout) The polynomial gcd(f , g) exists and
is unique up to a scalar multiple. Moreover, it is a non-zero
polynomial of the least degree that can be represented as
uf + vg , where u, v ∈ F[x ].

Theorem Given non-zero polynomials f , g ∈ F[x ], an
element α ∈ F is a common root of f and g if and only if
α is a root of gcd(f , g).

Idea of the proof: α is a common root of f and g if and only if
the polynomial x − α is a common divisor of f (x) and g(x).



Euclidean algorithm for polynomials

Lemma 1 If a polynomial g divides a polynomial f

then gcd(f , g) = g .

Lemma 2 If g does not divide f and r is the
remainder of f by g , then gcd(f , g) = gcd(g , r).

Theorem For any non-zero polynomials

f , g ∈ F[x ] there exists a sequence of polynomials
r1, r2, . . . , rk ∈ F[x ] such that r1 = f , r2 = g , ri is
the remainder of ri−2 by ri−1 for 3 ≤ i ≤ k , and rk
divides rk−1. Then gcd(f , g) = rk .



Problem. Find all common roots of real polynomials
p(x) = x4 + 2x3 − x2 − 2x + 1 and q(x) = x4 + x3 + x − 1.

Common roots of p and q are exactly roots of their greatest
common divisor gcd(p, q). We can find gcd(p, q) using the
Euclidean algorithm.

First we divide p by q: x4 + 2x3 − x2 − 2x + 1 =
= (x4 + x3 + x − 1)(1) + x3 − x2 − 3x + 2.

Next we divide q by the remainder r1(x) = x3 − x2 − 3x + 2:
x4 + x3 + x − 1 = (x3 − x2 − 3x + 2)(x + 2) + 5x2 + 5x − 5.

Next we divide r1 by the remainder r2(x) = 5x2 + 5x − 5:
x3 − x2 − 3x + 2 = (5x2 + 5x − 5)(1

5
x − 2

5
).

Since r2 divides r1, it follows that

gcd(p, q) = gcd(q, r1) = gcd(r1, r2) = r2.

The polynomial r2(x) = 5x2 + 5x − 5 has roots
(−1 −

√
5)/2 and (−1 +

√
5)/2.



Irreducible polynomials

Definition. A non-constant polynomial f ∈ F[x ]

over a field F is said to be irreducible over F if it
cannot be written as f = gh, where g , h ∈ F[x ],

and deg(g), deg(h) < deg(f ).

Irreducible polynomials are for multiplication of
polynomials what prime numbers are for

multiplication of integers.

If an irreducible polynomial f is divisible by another
polynomial g , then g is either of degree zero or a

scalar multiple of f .



Unique Factorisation Theorem

Theorem Any polynomial f ∈ F[x ] of positive degree admits
a factorisation f = p1p2 . . . pk into irreducible factors over F.
This factorisation is unique up to rearranging the factors and
multiplying them by non-zero scalars.

Ideas of the proof: The existence is proved by strong
induction on deg(f ). It is based on a simple fact: if
p1p2 . . . ps is an irreducible factorisation of f and q1q2 . . . qt
is an irreducible factorisation of g , then p1p2 . . . psq1q2 . . . qt
is an irreducible factorisation of fg .

The uniqueness is proved by (normal) induction on the
number of irreducible factors. It is based on a (not so simple)
fact: if an irreducible polynomial p divides a product of
irreducible polynomials q1q2 . . . qt then one of the factors
q1, . . . , qt is a scalar multiple of p.



Some facts and examples

• Any polynomial of degree 1 is irreducible.

• A polynomial p(x) ∈ F[x ] is divisible by a
polynomial of degree 1 if and only if it has a root.

Indeed, if p(α) = 0 for some α ∈ F, then p(x) is divisible by
x − α. Conversely, if p(x) is divisible by ax + b for some
a, b ∈ F, a 6= 0, then p has a root −b/a.

• A polynomial of degree 2 or 3 is irreducible if
and only if it has no roots.

If such a polynomial splits into a product of two non-constant
polynomials, then at least one of the factors is of degree 1.

• Polynomial p(x) = (x2 + 1)2 has no real roots,
yet it is not irreducible over R.



• Polynomial p(x) = x3 + x2 − 5x + 2 is
irreducible over Q.

We only need to check that p(x) has no rational roots. Since
all coefficients are integers and the leading coefficient is 1,
possible rational roots are integer divisors of the constant
term: ±1 and ±2. We check that p(1) = −1, p(−1) = 7,
p(2) = 4 and p(−2) = 8.

• If a polynomial p(x) ∈ R[x ] is irreducible over

R, then deg(p) = 1 or 2.

Assume deg(p) > 1. Then p has a complex root α = a + bi

that is not real: b 6= 0. Complex conjugacy r + si = r − si

commutes with arithmetic operations and preserves real
numbers. Therefore p(α) = p(α) = 0 so that α is another
root of p. It follows that p(x) is divisible by (x − α)(x − α)
= x2 − (α+ α)x + αα = x2 − 2ax + a2 + b2, which is a real
polynomial. Then p(x) must be a scalar multiple of it.



Factorisation over C and R

Clearly, any polynomial f ∈ F[x ] of degree 1 is irreducible
over F. Depending on the field F, there may exist other
irreducible polynomials as well.

Fundamental Theorem of Algebra Any nonconstant
polynomial over the field C has a root.

Corollary 1 The only irreducible polynomials over the field C

of complex numbers are linear polynomials. Equivalently, any
polynomial f ∈ C[x ] of a positive degree n can be factorised
as f (x) = c(x − α1)(x − α2) . . . (x − αn), where
c, α1, . . . , αn ∈ C and c 6= 0.

Corollary 2 The only irreducible polynomials over the field R

of real numbers are linear polynomials and quadratic
polynomials without real roots.



Examples of factorisation

• f (x) = x4 − 1 over R.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1).
The polynomial x2 + 1 is irreducible over R.

• f (x) = x4 − 1 over C.

f (x) = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1)
= (x − 1)(x + 1)(x − i)(x + i).

• f (x) = x4 − 1 over Z5.

It follows from Fermat’s Little Theorem that any non-zero
element of the field Z5 is a root of the polynomial f . Hence f

has 4 distinct roots. By the Unique Factorisation Theorem,

f (x) = (x − 1)(x − 2)(x − 3)(x − 4)
= (x − 1)(x + 1)(x − 2)(x + 2).



• f (x) = x4 − 1 over Z7.

Note that the polynomial x4 − 1 can be considered over any
field. Moreover, the expansion x4 − 1 = (x2 − 1)(x2 + 1)
= (x − 1)(x + 1)(x2 + 1) holds over any field. It depends on
the field whether the polynomial g(x) = x2 + 1 is irreducible.
Over the field Z7, we have g(0) = 1, g(±1) = 2, g(±2) = 5
and g(±3) = 10 = 3. Hence g has no roots. For
polynomials of degree 2 or 3, this implies irreducibility.

• f (x) = x4 − 1 over Z17.

The polynomial x2 + 1 has roots ±4. It follows that
f (x) = (x − 1)(x +1)(x2 +1) = (x − 1)(x +1)(x − 4)(x + 4).

• f (x) = x4 − 1 over Z2.

For this field, we have 1 + 1 = 0 so that −1 = 1. Hence
x4 − 1 = (x2 − 1)(x2 + 1) = (x2 − 1)2 = (x − 1)2(x + 1)2

= (x − 1)4.


