
MATH 433

Applied Algebra

Lecture 37:

Review for Exam 3.



Topics for Exam 3

• Order of an element in a group
• Subgroups
• Cyclic groups
• Cosets
• Lagrange’s Theorem
• Isomorphism of groups, classification of groups

• The ISBN code
• Binary codes, error detection and error correction
• Linear codes, generator matrix
• Coset leaders, coset decoding table
• Parity-check matrix, syndromes

• Division of polynomials
• Greatest common divisor of polynomials
• Factorisation of polynomials



Sample problems

Problem 1. Suppose π, σ ∈ S(5) are
permutations of order 3. What are possible values

for the order of the permutation πσ.

Problem 2. Suppose H and K are subgroups of a
group G . Is the union H ∪ K necessarily a
subgroup of G? Is the intersection H ∩ K

necessarily a subgroup of G?

Problem 3. Prove that the group (Q \ {0},×) is
not cyclic.



Sample problems

Problem 4. Suppose G is a group of order 125.
Show that G contains an element of order 5.

Problem 5. The group (G15,×) has subgroups of
what orders?

Problem 6. For any two of the following groups

of order 6, determine whether they are isomorphic
or not: Z6, Z3 × Z2, S(3), and D(3).



Sample problems

Problem 7. Let f : B3 → B7 be the coding function that
sends each three-character word abc in the alphabet
B = {0, 1} to the codeword abcabcy , where y is the inverted
parity bit of the word abc (i.e., y = 0 if abc contains an
odd number of 1’s and y = 1 otherwise). How many errors
will this code detect? correct? Is this code linear?

Problem 8. Let f : B3 → B6 be a linear coding function
defined by the generator matrix





1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1



.

Suppose that a message encoded by this function is received
with errors as 101101 010101 011111. Correct errors and
decode the received message.



Sample problems

Problem 9. Find a greatest common divisor of
polynomials p(x) = x4 − 2x3 + 5x2 − 4x + 4 and

q(x) = 2x3 − 3x2 + 5x − 2 over R.

Problem 10. Factorise a polynomial
p(x) = x3 − 3x2 + 3x − 2 into irreducible factors

over the field Z7.



Problem 1. Suppose π, σ ∈ S(5) are permutations of order
3. What are possible values for the order of permutation πσ.

The order of a permutation equals the least common multiple
of the cycle lengths in its cycle decomposition. Hence it
equals 3 only if the cycles are of length 1 or 3 (at least one
cycle of length 3 is required). For permutations π, σ ∈ S(5),
this implies that both are cycles of length 3.

Note that any cycle of length 3 is an even permutation.
Hence π and σ belong to the alternating group A(5). Then
πσ ∈ A(5) as well. Possible orders of elements of A(5) are:
1 (for the identity map), 2 (for a product of two disjoint
transpositions), 3 (for a cycle of length 3), and 5 (for a cycle
of length 5).

Consider the following cycles of length 3 in A(5): π = (1 2 3),
σ1 = (1 4 5), σ2 = (1 2 4), σ3 = (1 2 3), and σ4 = (1 3 2).
We have πσ1 = (1 4 5 2 3), πσ2 = (1 3)(2 4), πσ3 = (1 3 2),
and πσ4 = id. Thus the order of πσ can be 1, 2, 3 or 5.



Problem 2. Suppose H and K are subgroups of a
group G . Is the union H ∪ K necessarily a

subgroup of G? Is the intersection H ∩ K

necessarily a subgroup of G?

The union H ∪ K is a subgroup of G only if H ⊂ K or
K ⊂ H (so that H ∪ K coincides with one of the subgroups
H and K ).

Otherwise H ∪ K is not closed under the group operation.
Indeed, if neither of the subgroups contains the other, we can
find an element h ∈ H \ K and an element k ∈ K \ H. Let
g = hk. Then g /∈ H as otherwise k = h−1g ∈ H, a
contradiction. Similarly, g /∈ K as otherwise h = gk−1 ∈ K ,
another contradiction. Thus h, k ∈ H ∪K while hk /∈ H ∪K .

The intersection H ∩ K of two subgroups is always a
subgroup (see lecture notes and the textbook).



Problem 3. Prove that the group (Q \ {0},×) is

not cyclic.

Take any non-zero rational number r . It can be represented

as a reduced fraction: r =
m

n
, where m and n are non-zero

integers and gcd(m, n) = 1.

The cyclic group 〈r〉 consists of fractions
m

n
,
m2

n2
,
m3

n3
, . . . ,

fractions
n

m
,
n2

m2
,
n3

m3
, . . . , and 1. Note that all fractions are

reduced.

The numbers m and n can have only finitely many prime
divisors. Since there are infinitely many prime numbers,
we can find a prime number p that divides neither m nor n.
It is easy to see that p /∈ 〈r〉. Thus 〈r〉 6= Q \ {0}.



Problem 4. Suppose G is a group of order 125.
Show that G contains an element of order 5.

It follows from Lagrange’s Theorem that the order of any
element of the group G divides 125. Hence the only orders we
can expect are 1, 5, 25, and 125.

Let g be any element of G different from the identity element.
Then the order of g is 5, 25 or 125.

If o(g) = 5 then we are done.
If o(g) = 25 then the element g 5 has order 5.
If o(g) = 125 then the element g 25 has order 5.

Remarks. • In general, if the order of g is n, then the order of

g k is
n

gcd(k, n)
.

• A theorem of Cauchy states that if the order of a finite
group is divisible by a prime number p then the group contains
an element of order p.



Problem 5. The group (G15,×) has subgroups of

what orders?

G15 is the multiplicative group of invertible congruence classes
modulo 15. It has 8 elements:

[1], [2], [4], [7], [8], [11], [13], [14].

By Lagrange’s Theorem, a subgroup of G15 can be of order 1,
2, 4 or 8. First we find the cyclic subgroups of G15. These are

{[1]}, {[1],[4]}, {[1],[11]}={[1],[−4]}, {[1],[14]}={[1],[−1]},

{[1], [2], [4], [8]}, and {[1], [4], [7], [13]}={[1], [−2], [4], [−8]}.

Hence we have cyclic subgroups of orders 1, 2 and 4. Also,
the entire group G15 is a subgroup of order 8.

Remarks. • The only other subgroup of G15 is a non-cyclic
group {[1], [4], [11], [14]} = {[1], [4], [−4], [−1]}.

• One can show that G15
∼= Z4 × Z2.



Problem 6. For any two of the following groups of order 6,
determine whether they are isomorphic or not: Z6, Z3 × Z2,
S(3), and D(3).

Z3 × Z2 is an additive group, where the addition is defined by
(g , h) + (g ′, h′) = (g + g ′, h + h′). It is easy to check that
the element ([1]3, [1]2) has order 6. Therefore it generates
the entire group so that Z3 × Z2 is cyclic. Hence it is
isomorphic to Z6 as another cyclic group of order 6.

D(3) is a dihedral group, the group of symmetries of an
equilateral triangle. Any symmetry permutes vertices of the
triangle. Once we label the vertices as 1, 2, and 3, each
symmetry from D(3) is assigned a permutation from the
symmetric group S(3). This correspondence is actually an
isomorphism.

Neither of the groups Z6 and Z3 × Z2 is isomorphic to S(3)
or D(3) since the first two groups are commutative while the
other two are not.



Problem 6. For any two of the following groups of order 6,
determine whether they are isomorphic or not: Z6, Z3 × Z2,
S(3), and D(3).

Alternative solution: Let us use the classification of groups of
small size. According to the classification, any group of order
6 is isomorphic either to Z6 or to S(3). Notice that the
group Z6 is Abelian while the group S(3) is non-Abelian.

Since no Abelian group can be isomorphic to a non-Abelian
one, it follows that every Abelian group of order 6 is
isomorphic to Z6 while every non-Abelian group of order 6 is
isomorphic to S(3).

In particular, Z3 × Z2
∼= Z6 and D(3) ∼= S(3).

Besides, neither of the Abelian groups Z6 and Z3 × Z2 is
isomorphic to non-Abelian groups S(3) or D(3).



Problem 7. Let f : B3 → B7 be the coding function that
sends each three-character word abc in the alphabet
B = {0, 1} to the codeword abcabcy , where y is the inverted
parity bit of the word abc (i.e., y = 0 if abc contains an
odd number of 1’s and y = 1 otherwise). How many errors
will this code detect? correct? Is this code linear?

First we list all 8 codewords for the given code:

0000001, 0010010, 0100100, 0110111,
1001000, 1011011, 1101101, 1111110.

Then we determine the minimum distance between distinct
codewords. By inspection, it is 3. Therefore the code allows
to detect 2 errors and to correct 1 error.

For any linear code, the set of codewords is a subspace of
some Bn. As a consequence, it contains the zero word. Since
the zero word is not a codeword for the function f , this code
cannot possibly be linear.



Problem 8. Let f : B3 → B6 be a linear coding function
defined by the generator matrix





1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1



.

Suppose that a message encoded by this function is received
with errors as 101101 010101 011111. Correct errors and
decode the received message.

The coding function is given by f (w) = wG , where G is the
generator matrix and w is regarded as a row vector. The 8
codewords are linear combinations of rows of the generator
matrix:

000000, 001011, 010110, 011101,
100101, 101110, 110011, 111000.

Every received word is corrected to the closest codeword. The
corrected message is 100101 011101 011101. Since the
code is systematic, decoding consists of truncating the
codewords to 3 digits: 100 011 011.



Problem 9. Find a greatest common divisor of polynomials
p(x) = x4 − 2x3 + 5x2 − 4x + 4 and
q(x) = 2x3 − 3x2 + 5x − 2 over R.

gcd(p, q) can be found using the Euclidean algorithm. First
we divide p by q: x4 − 2x3 + 5x2 − 4x + 4 =
= (2x3 − 3x2 + 5x − 2)(1

2
x − 1

4
) + 7

4
x2 − 7

4
x + 7

2
.

Hence gcd(p, q) = gcd(q, r), where r(x) = 7

4
x2 − 7

4
x + 7

2
is

the remainder of p by q. It is convenient to replace the
polynomial r by its scalar multiple r̃(x) = 4

7
r(x) = x2 − x + 2.

Clearly, gcd(q, r) = gcd(q, r̃).

Next we divide q by r̃ :
2x3 − 3x2 + 5x − 2 = (x2 − x + 2)(2x − 1).
Since r̃ divides q, it follows that gcd(q, r̃) = r̃ .

Finally, gcd(p, q) = x2 − x + 2.



Problem 10. Factorise a polynomial p(x) = x3−3x2+3x−2
into irreducible factors over the field Z7.

A quadratic or cubic polynomial is irreducible if and only if it
has no roots. Indeed, if such a polynomial splits into a
product of two non-constant polynomials, then at least one of
the factors is linear. This implies that the original polynomial
has a root.

Let us look for the roots of p(x): p(0) = −2, p(1) = −1,
p(2) = 0. Hence p(x) is divisible by x − 2 (over any field):

x3 − 3x2 + 3x − 2 = (x − 2)(x2 − x + 1).

Now we look for roots of the polynomial q(x) = x2 − x + 1.
Note that values 0 and 1 can be skipped this time. We obtain
q(2) = 3, q(3) = 7 ≡ 0 mod 7. Hence q(x) is divisible by
x − 3 over Z7: x2 − x + 1 = (x − 3)(x + 2).

Thus x3 − 3x2 + 3x − 2 = (x − 2)(x − 3)(x + 2) over the
field Z7.


