MATH 614 Dynamical Systems and Chaos Lecture 1: Examples of dynamical systems.

A **discrete dynamical system** is simply a transformation $f: X \to X$. The set X is regarded the phase space of the system and the map f is considered the law of evolution over a period of time. Given an initial point $x_0 \in X$, the theory of dynamical systems is concerned with asymptotic behavior of a sequence $x_0, f(x_0), f(f(x_0)), f(f(f(x_0))), \ldots$, which is called the **orbit** of the point x_0 . There are several questions to address here:

• behavior of an individual orbit (say, is it periodic?);

• global behavior of the system (say, are there interesting invariant sets?);

• what happens when we perturb x_0 (is the system regular or chaotic?);

• what happens when we perturb *f* (is the system structurally stable?).

A continuous dynamical system (or a flow) is a one-parameter family of maps $T^t: X \to X$, t > 0, such that $T^t \circ T^s = T^{t+s}$ for all t, s > 0.

Example of a flow

Consider an autonomous system of n ordinary differential equations of the first order

$$\begin{cases} \dot{x}_1 = g_1(x_1, x_2, \dots, x_n), \\ \dot{x}_2 = g_2(x_1, x_2, \dots, x_n), \\ \dots \\ \dot{x}_n = g_n(x_1, x_2, \dots, x_n), \end{cases}$$

where g_1, g_2, \ldots, g_n are differentiable functions defined in a domain $D \subset \mathbb{R}^n$. In vector form, $\dot{\mathbf{v}} = G(\mathbf{v})$, where $G: D \to \mathbb{R}^n$ is a vector field. Assume that for any $\mathbf{x} \in D$ the initial value problem $\dot{\mathbf{v}} = G(\mathbf{v})$, $\mathbf{v}(0) = \mathbf{x}$ has a unique solution $\mathbf{v}_{\mathbf{x}}(t)$, $t \ge 0$. Then the system of ODEs gives rise to a dynamical system with continuous time $F^t: D \to D, t \ge 0$ defined by $F^t(\mathbf{x}) = \mathbf{v}_{\mathbf{x}}(t)$ for all $\mathbf{x} \in D$ and $t \ge 0$.

In the case G is linear, $G(\mathbf{v}) = A\mathbf{v}$ for some $n \times n$ matrix A, the flow is also linear, $F^t(\mathbf{x}) = e^{tA}\mathbf{x}$.

The first return map

Suppose $f : X \to X$ is a discrete dynamical system and X_0 is a subset of the phase space X.

Definition. The first return map (or Poincare map) of f on X_0 is a map $f_0: X_0 \to X_0$ defined by $f_0(x) = f^{n(x)}(x), x \in X_0,$

where n(x) is the least positive integer n such that $f^n(x) \in X_0$.

Note that f_0 might not be well defined on the entire set X_0 .

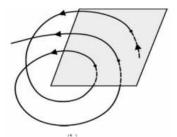
The first return map can be used to study the dynamical system using renormalization techniques.

The first return map

Similarly, given a continuous dynamical system $T^t: X \to X$ and a subset $X_0 \subset X$, we can define the **first return map** $f_0: X_0 \to X_0$ of the flow T^t by

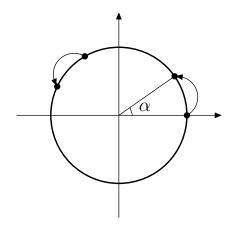
$$f_0(x) = T^{t(x)}(x), \ x \in X_0,$$

where t(x) is the least number t > 0 such that $T^{t}(x) \in X_{0}$.



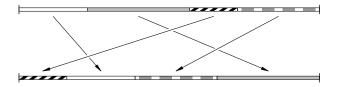
Again, f_0 might not be well defined on the entire set X_0 . For a continuous dynamical system, the first return map often allows to reduce the dimension of the phase space by 1.

Rotation of the circle



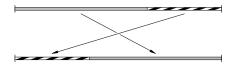
 $R_{\alpha}: S^1 \to S^1$, rotation by angle $\alpha \in \mathbb{R}$. All rotations R_{α} , $\alpha \in \mathbb{R}$ form a flow on S^1 .

Interval exchange transformation



An **interval exchange transformation** of an interval *I* is defined by cutting the interval into several subintervals and then rearranging them by translation.

Combinatorial description: (λ, π) , where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n$, $\lambda_i > 0$, $\lambda_1 + \dots + \lambda_n = |I|$; π is a permutation on $\{1, 2, \dots, n\}$. In the example, $\pi = (1243)$. The exchange of two intervals is equivalent to a rotation of the circle.



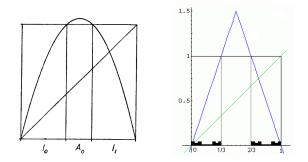
Interval exchange transformations arise as the first return maps for certain flows on surfaces.

Unimodal maps

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous map such that

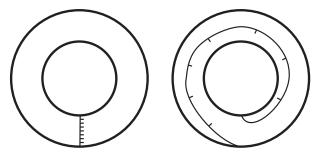
•
$$f(0) = f(1) = 0;$$

• there exists a point $x_{\max} \in (0, 1)$ such that f is strictly increasing on $(-\infty, x_{\max}]$ and strictly decreasing on $[x_{\max}, \infty)$; The map f is called **unimodal**.



Twist map

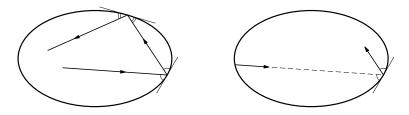
A **twist map** is a homeomorphism of an annulus that fixes both boundary circles (pointwise!) but rotates them relative to each other.



Example. U is an annulus given by $1 \le r \le 2$ in polar coordinates (r, ϕ) . A twist map $T: U \to U$ is defined by $T(r, \phi) = (r, \phi + 2\pi(r-1))$.

The annulus is foliated by invariant circles (rotated by T).

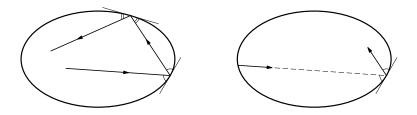
Billiard



D: a bounded domain with piecewise smooth boundary in \mathbb{R}^2 (a billiard table).

The **billiard flow** in *D* is a dynamical system describing uniform motion with unit speed inside *D* of a point representing the billiard ball and with reflections off the boundary according to the law *the angle of incidence is equal to the angle of reflection*. The phase space of the flow is $D \times S^1$ (unit tangent bundle) up to some identifications on the boundary.

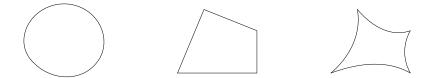
Billiard



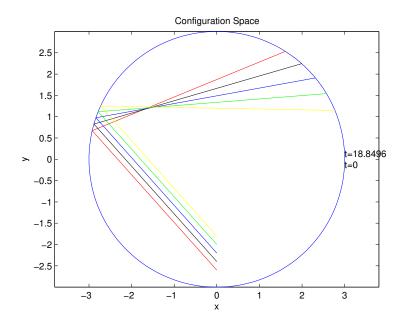
The **billiard ball map** of $\partial D \times S^1$ (modulo identifications) is a first-return map of the billiard flow.

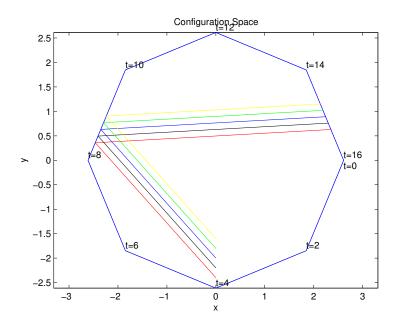
In the case the billiard table D is convex and smooth, the billiard ball map can be represented as a twist map.

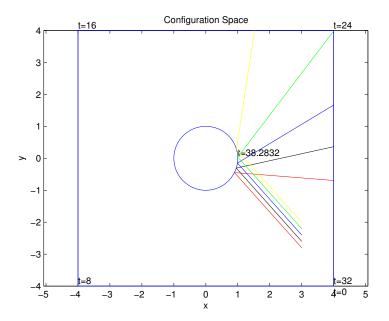
Three types of boundary



Birkhoff billiards polygonal billiards Sinai billiards regular intermediate chaotic focusing neutral dispersing



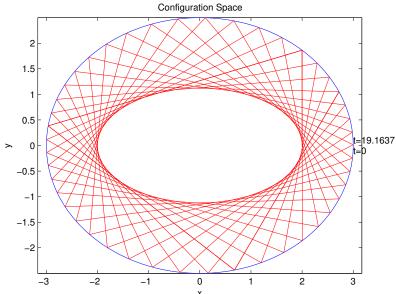




Billiard in a circle

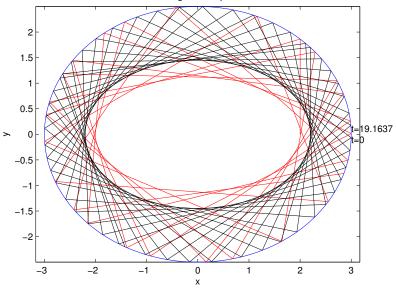
Configuration Space 4 3 2 1 t=31.41**5**9 > 0 t=0 -1 -2 -3 -4 -6 -2 0 2 4 6 Λ

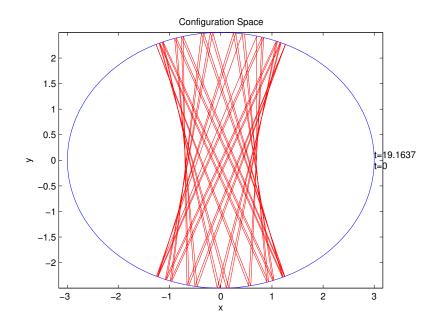
Billiard in an ellipse



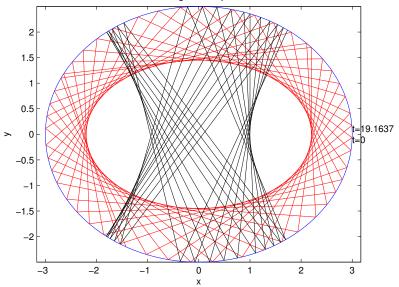
х

Configuration Space

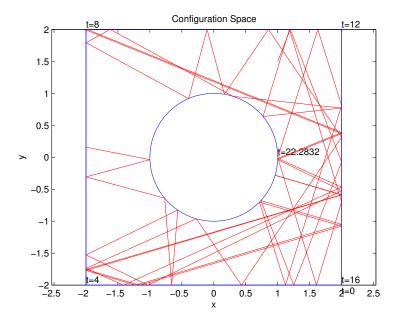




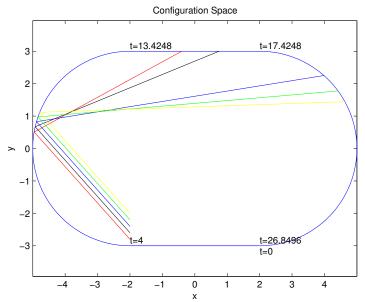
Configuration Space



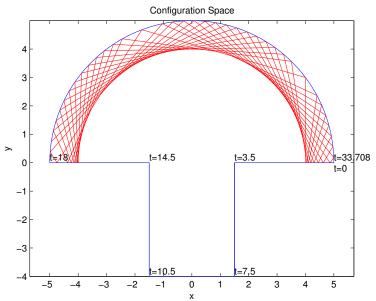
Sinai billiard

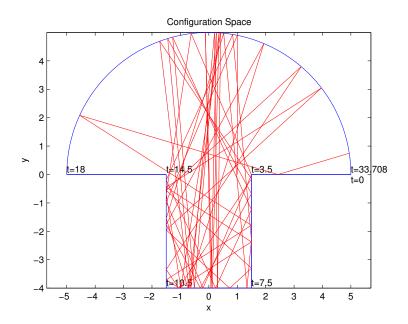


Stadium billiard



Mushroom billiard





Configuration Space

