MATH 614 Dynamical Systems and Chaos Lecture 5: Cantor sets. Fractal dimension. Metric spaces.

Cantor sets

Definition. A subset Λ of the real line \mathbb{R} is called a (general) **Cantor set** if it is

- nonempty,
- compact, which means that Λ is bounded and closed,

- totally disconnected, which means that Λ contains no intervals, and

• perfect, which means that Λ has no isolated points.

Unimodal maps

Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous map such that

•
$$f(0) = f(1) = 0;$$

• there exists a point $x_{\max} \in (0, 1)$ such that f is strictly increasing on $(-\infty, x_{\max}]$ and strictly decreasing on $[x_{\max}, \infty)$;

•
$$f(x_{\max}) > 1$$
.

The map f is called **unimodal**.

Itinerary map

Let $f : \mathbb{R} \to \mathbb{R}$ be a unimodal map, Λ be the set of all points $x \in \mathbb{R}$ such that $O_f^+(x) \subset [0, 1]$, and $S : \Lambda \to \Sigma_2$ be the **itinerary map** introduced in the previous lecture.

Proposition 1 The set Λ is compact and has no isolated points.

Proposition 2 $S \circ f = \sigma \circ S$ on Λ , where $\sigma : \Sigma_2 \to \Sigma_2$ is the shift map.

Proposition 3 The itinerary map *S* is onto.

Proposition 4 The set Λ is a Cantor set if and only if the itinerary map *S* is one-to-one.

In the case f is the tent map with $\mu = 3$, the interval A_0 is the middle third of [0, 1] so that Λ_3 is exactly the Cantor Middle-Thirds Set.

The set Λ_3 consists of those points $x \in [0, 1]$ that admit a ternary expansion $0.s_1s_2...$ without any 1's (only 0's and 2's).

Fractal dimension

The unit interval [0, 1] is self-similar in the following sense. If you scale it by a factor of n (where n is a whole number), then it can be cut into n unit intervals. Likewise, the unit square $[0,1] \times [0,1]$ is self-similar: if you scale it by a factor of n, then it can be cut into n^2 unit squares. Likewise, the unit box $[0,1] \times [0,1] \times [0,1]$ is self-similar: if you scale it by a factor of n, then it can be cut into n^3 unit boxes.

The invariant Cantor set Λ_{μ} of the tent map T_{μ} ($\mu > 2$) is self-similar as well. When you scale it by a factor of μ , you get 2 copies of the original set. Scaling by a factor of μ^{k} produces 2^{k} copies of the original set.

Consequently, the dimension of Λ_{μ} is $\log_{\mu} 2 < 1$.

General Cantor sets

Definition. A subset Λ of the real line \mathbb{R} is called a (general) **Cantor set** if it is

- nonempty,
- compact, which means that Λ is bounded and closed,
- totally disconnected, which means that Λ contains no intervals, and
 - perfect, which means that Λ has no isolated points.

Theorem Any two Cantor sets are homeomorphic. That is, if Λ and Λ' are Cantor sets, then there exists a homeomorphism $\phi : \Lambda \to \Lambda'$ (an invertible map such that both ϕ and ϕ^{-1} are continuous).

Furthermore, the homeomorphism ϕ can be chosen strictly increasing, in which case it can be extended to a homeomorphism $\tilde{\phi} : \mathbb{R} \to \mathbb{R}$.

An open subset $U \subset \mathbb{R}$ is a union of open intervals. An open interval (a, b) is called a **maximal subinterval** of U if there is no other interval (c, d) such that $(a, b) \subset (c, d) \subset U$.

Lemma 1 Any point of U is contained in a maximal subinterval.

Lemma 2 Finite endpoints of a maximal subinterval do not belong to U.

Lemma 3 Distinct maximal subintervals are disjoint.

Lemma 4 There are at most countably many maximal subintervals.

Lemma 5 If Λ is a Cantor set, then for any two maximal subintervals of $\mathbb{R} \setminus \Lambda$ there is another maximal subinterval that lies between them.

Lemma 6 If Λ, Λ' are Cantor sets sets then there exists a monotone one-to-one correspondence between maximal subintervals of their complements.

Metric space

Definition. Given a nonempty set X, a **metric** (or **distance function**) on X is a function $d : X \times X \to \mathbb{R}$ that satisfies the following conditions:

• (positivity) $d(x, y) \ge 0$ for all $x, y \in X$; moreover, d(x, y) = 0 if and only if x = y;

• (symmetry) d(x,y) = d(y,x) for all $x, y \in X$;

• (triangle inequality) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

A set endowed with a metric is called a **metric space**.

Examples of metric spaces

• Real line
$$X = \mathbb{R}, \ d(x, y) = |y - x|.$$

• Euclidean space

$$X = \mathbb{R}^n$$
, $d(\mathbf{x}, \mathbf{y}) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}$.

- Normed vector space
- X: vector space with a norm $\|\cdot\|$, $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} \mathbf{x}\|$.
- Discrete metric space

X: any nonempty set, d(x, y) = 1 if $x \neq y$ and d(x, y) = 0 if x = y.

• Subspace of a metric space

X: nonempty subset of a metric space Y with a distance function $\rho: Y \times Y \to \mathbb{R}$, d is the restriction of ρ to $X \times X$.

Convergence and continuity

Suppose (X, d) is a metric space, that is, X is a set and d is a metric on X.

We say that a sequence of points $x_1, x_2, ...$ of the set X converges to a point $y \in X$ if $d(x_n, y) \to 0$ as $n \to \infty$.

Given another metric space (Y, ρ) and a function $f: X \to Y$, we say that f is **continuous at a point** $x_0 \in X$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, x_0) < \delta \implies \rho(f(x), f(x_0)) < \varepsilon$.

We say that the function f is **continuous on a set** $U \subset X$ if it is continuous at each point of U.

Space of infinite sequences

Let \mathcal{A} be a finite set. We denote by $\Sigma_{\mathcal{A}}$ the set of all infinite sequences $\mathbf{s} = (s_1 s_2 \dots)$, $s_i \in \mathcal{A}$. Elements of $\Sigma_{\mathcal{A}}$ are also referred to as **infinite words** over the **alphabet** \mathcal{A} .

For any infinite sequences $\mathbf{s} = (s_1 s_2 \dots)$ and $\mathbf{t} = (t_1 t_2 \dots)$ in Σ_A , let $d(\mathbf{s}, \mathbf{t}) = 2^{-n}$ if $s_i = t_i$ for $1 \le i \le n$ while $s_{n+1} \ne t_{n+1}$. Also, let $d(\mathbf{s}, \mathbf{t}) = 0$ if $s_i = t_i$ for all $i \ge 1$.

Proposition The function *d* is a metric on Σ_A .

Two infinite words are considered close in the metric space (Σ_A, d) if they have a long common beginning.

Suppose $f : \mathbb{R} \to \mathbb{R}$ is a unimodal map that admits an invariant Cantor set $\Lambda \subset [0, 1]$. Let $S : \Lambda \to \Sigma_2 = \Sigma_{\{0,1\}}$ be the itinerary map.

Theorem The itinerary map *S* is continuous.