MATH 614 Dynamical Systems and Chaos Lecture 7: Symbolic dynamics (continued).

Symbolic dynamics

Given a finite set \mathcal{A} (an alphabet), we denote by $\Sigma_{\mathcal{A}}$ the set of all infinite words over \mathcal{A} , i.e., infinite sequences $\mathbf{s} = (s_1 s_2 \dots)$, $s_i \in \mathcal{A}$.

For any finite word w over the alphabet \mathcal{A} , that is, $w = s_1 s_2 \dots s_n$, $s_i \in \mathcal{A}$, we define a **cylinder** C(w) to be the set of all infinite words $\mathbf{s} \in \Sigma_{\mathcal{A}}$ that begin with w. The topology on $\Sigma_{\mathcal{A}}$ is defined so that open sets are unions of cylinders. Two infinite words are considered close in this topology if they have a long common beginning.

The **shift** transformation $\sigma : \Sigma_A \to \Sigma_A$ is defined by $\sigma(s_0s_1s_2...) = (s_1s_2...)$. This transformation is continuous. The study of the shift and related transformations is called **symbolic dynamics**.

Properties of the shift

• The shift transformation $\sigma: \Sigma_A \to \Sigma_A$ is continuous.

• An infinite word $\mathbf{s} \in \Sigma_A$ is a periodic point of the shift if and only if $\mathbf{s} = www...$ for some finite word w.

• An infinite word $\mathbf{s} \in \Sigma_{\mathcal{A}}$ is an eventually periodic point of the shift if and only if $\mathbf{s} = uwww...$ for some finite words u and w.

• The shift σ has periodic points of all (prime) periods.

Dense sets

Definition. Suppose (X, d) is a metric space. We say that a subset $E \subset X$ is **everywhere dense** (or simply **dense**) in X if for every $x \in X$ and $\varepsilon > 0$ there exists $y \in E$ such that $d(y, x) < \varepsilon$.

More generally, suppose X is a topological space. We say that a subset $E \subset X$ is **dense** in X if E intersects every nonempty open subset of X.

Proposition Periodic points of the shift $\sigma: \Sigma_{\mathcal{A}} \to \Sigma_{\mathcal{A}}$ are dense in $\Sigma_{\mathcal{A}}$.

Proof: Let w be any nonempty finite word over the alhabet \mathcal{A} . Then the cylinder C(w) contains a periodic point, e.g., *www...* Consequently, any nonempty open set $U \subset \Sigma_{\mathcal{A}}$ contains a periodic point.

Dense orbit of the shift

Proposition The shift transformation $\sigma: \Sigma_{\mathcal{A}} \to \Sigma_{\mathcal{A}}$ admits a dense orbit.

Proof: Since open subsets of Σ_A are unions of cylinders, it follows that a set $E \subset \Sigma_A$ is dense if and only if it intersects every cylinder.

The orbit under the shift of an infinite word $\mathbf{s} \in \Sigma_{\mathcal{A}}$ visits a particular cylinder C(w) if and only if the finite word w appears somewhere in \mathbf{s} , that is, $\mathbf{s} = w_0 w \mathbf{s}_0$, where w_0 is a finite word and \mathbf{s}_0 is an infinite word. Therefore the orbit $O_{\sigma}^+(\mathbf{s})$ is dense in $\Sigma_{\mathcal{A}}$ if and only if the infinite word \mathbf{s} contains all finite words over the alphabet \mathcal{A} as subwords.

There are only countably many finite words over \mathcal{A} . We can enumerate them all: w_1, w_2, w_3, \ldots Then an infinite word $\mathbf{s} = w_1 w_2 w_3 \ldots$ has dense orbit.

Applications of symbolic dynamics

Suppose $f: X \to X$ is a dynamical system. Given a partition of the set X into disjoint subsets X_{α} , $\alpha \in \mathcal{A}$ indexed by elements of a finite set \mathcal{A} , we can define the **itinerary map** $S: X \to \Sigma_{\mathcal{A}}$ so that $S(x) = (s_0 s_1 s_2 \dots)$, where $f^n(x) \in X_{s_n}$ for all $n \ge 0$.

In the case f is continuous, the itinerary map is continuous if the sets X_{α} are **clopen** (i.e., both closed and open).

Indeed, for any finite word $w = s_0 s_1 \dots s_k$ over the alphabet \mathcal{A} the preimage of the cylinder C(w) under the itinerary map is

$$S^{-1}(C(w)) = X_{s_0} \cap f^{-1}(X_{s_1}) \cap \cdots \cap (f^k)^{-1}(X_{s_k}).$$

Applications of symbolic dynamics

A more general construction is to take disjoint open sets X_{α} , $\alpha \in \mathcal{A}$ that need not cover the entire set X. Then the itinerary map is defined on a subset of X consisting of all points whose orbits stay in the union of the sets X_{α} .

Alternatively, we can consider a partition into sets that are not open (but then the itinerary map will not be continuous at some points). Alternatively, we can allow the sets X_{α} to overlap (but then the itinerary map will not be uniquely defined at some points).

Examples

Any real number x is uniquely represented as x = k + r, where $k \in \mathbb{Z}$ and and $0 \le r < 1$. Then k is called the **integer part** of x and r is called the **fractional part** of x. Notation: k = [x], $r = \{x\}$.

Example. $f : [0,1) \to [0,1), f(x) = \{10x\}.$

Consider a partition of the interval [0,1) into 10 subintervals $X_i = [\frac{i}{10}, \frac{i+1}{10}), \ 0 \le i \le 9$. That is, $X_0 = [0, 0.1), \ X_1 = [0.1, 0.2), \dots, \ X_9 = [0.9, 1)$.

Given a point $x \in [0, 1)$, let $S(x) = (s_0 s_1 s_2 ...)$ be the itinerary of x relative to that partition. Then $0.s_0 s_1 s_2 ...$ is the decimal expansion of the real number x.

Totally disconnected sets

Let X be a topological space and $E \subset X$. We say that points $x, y \in E$ are **disconnected** in E if there exist disjoint open sets $U_x, U_y \subset X$ such that $x \in U_x, y \in U_y$, and $E \subset U_x \cup U_y$. The set E is called **connected** if no points in E are disconnected. The set E is called **totally disconnected** if any two points of E are disconnected.

Suppose (X, d) is a metric space. The space X is called **ultrametric** (or **non-Archimedean**) if $d(x, y) \le \max(d(x, z), d(z, y))$ for all $x, y, z \in X$.

Theorem Any ultrametric space is totally disconnected.

Idea of the proof: In the ultrametric space, two balls $B_{\varepsilon}(x)$ and $B_{\varepsilon}(y)$ of the same radius are either disjoint or the same.

Theorem The space Σ_A of infinite sequences is ultrametric (and hence totally disconnected).