MATH 614

Dynamical Systems and Chaos

Lecture 7:
 Symbolic dynamics (continued).

Symbolic dynamics

Given a finite set \mathcal{A} (an alphabet), we denote by $\Sigma_{\mathcal{A}}$ the set of all infinite words over \mathcal{A}, i.e., infinite sequences $\mathbf{s}=\left(s_{1} s_{2} \ldots\right)$, $s_{i} \in \mathcal{A}$.

For any finite word w over the alphabet \mathcal{A}, that is, $w=s_{1} s_{2} \ldots s_{n}, s_{i} \in \mathcal{A}$, we define a cylinder $C(w)$ to be the set of all infinite words $\mathbf{s} \in \Sigma_{\mathcal{A}}$ that begin with w. The topology on $\Sigma_{\mathcal{A}}$ is defined so that open sets are unions of cylinders. Two infinite words are considered close in this topology if they have a long common beginning.

The shift transformation $\sigma: \Sigma_{\mathcal{A}} \rightarrow \Sigma_{\mathcal{A}}$ is defined by $\sigma\left(s_{0} s_{1} s_{2} \ldots\right)=\left(s_{1} s_{2} \ldots\right)$. This transformation is continuous. The study of the shift and related transformations is called symbolic dynamics.

Properties of the shift

- The shift transformation $\sigma: \Sigma_{\mathcal{A}} \rightarrow \Sigma_{\mathcal{A}}$ is continuous.
- An infinite word $\mathbf{s} \in \Sigma_{\mathcal{A}}$ is a periodic point of the shift if and only if $\mathbf{s}=w w w .$. for some finite word w.
- An infinite word $\mathbf{s} \in \Sigma_{\mathcal{A}}$ is an eventually periodic point of the shift if and only if $\mathbf{s}=u w w w .$. for some finite words u and w.
- The shift σ has periodic points of all (prime) periods.

Dense sets

Definition. Suppose (X, d) is a metric space. We say that a subset $E \subset X$ is everywhere dense (or simply dense) in X if for every $x \in X$ and $\varepsilon>0$ there exists $y \in E$ such that $d(y, x)<\varepsilon$.
More generally, suppose X is a topological space. We say that a subset $E \subset X$ is dense in X if E intersects every nonempty open subset of X.

Proposition Periodic points of the shift $\sigma: \Sigma_{\mathcal{A}} \rightarrow \Sigma_{\mathcal{A}}$ are dense in $\Sigma_{\mathcal{A}}$.

Proof: Let w be any nonempty finite word over the alhabet \mathcal{A}. Then the cylinder $C(w)$ contains a periodic point, e.g., $w w w .$. Consequently, any nonempty open set $U \subset \Sigma_{\mathcal{A}}$ contains a periodic point.

Dense orbit of the shift

Proposition The shift transformation
$\sigma: \Sigma_{\mathcal{A}} \rightarrow \Sigma_{\mathcal{A}}$ admits a dense orbit.
Proof: Since open subsets of $\Sigma_{\mathcal{A}}$ are unions of cylinders, it follows that a set $E \subset \Sigma_{\mathcal{A}}$ is dense if and only if it intersects every cylinder.
The orbit under the shift of an infinite word $\mathbf{s} \in \Sigma_{\mathcal{A}}$ visits a particular cylinder $C(w)$ if and only if the finite word w appears somewhere in \mathbf{s}, that is, $\mathbf{s}=w_{0} w \mathbf{s}_{0}$, where w_{0} is a finite word and \mathbf{s}_{0} is an infinite word. Therefore the orbit $O_{\sigma}^{+}(\mathbf{s})$ is dense in $\Sigma_{\mathcal{A}}$ if and only if the infinite word \mathbf{s} contains all finite words over the alphabet \mathcal{A} as subwords.
There are only countably many finite words over \mathcal{A}. We can enumerate them all: $w_{1}, w_{2}, w_{3}, \ldots$ Then an infinite word $\mathbf{s}=w_{1} w_{2} w_{3} \ldots$ has dense orbit.

Applications of symbolic dynamics

Suppose $f: X \rightarrow X$ is a dynamical system. Given a partition of the set X into disjoint subsets X_{α}, $\alpha \in \mathcal{A}$ indexed by elements of a finite set \mathcal{A}, we can define the itinerary map $S: X \rightarrow \Sigma_{\mathcal{A}}$ so that $S(x)=\left(s_{0} s_{1} s_{2} \ldots\right)$, where $f^{n}(x) \in X_{s_{n}}$ for all $n \geq 0$.

In the case f is continuous, the itinerary map is continuous if the sets X_{α} are clopen (i.e., both closed and open).
Indeed, for any finite word $w=s_{0} s_{1} \ldots s_{k}$ over the alphabet \mathcal{A} the preimage of the cylinder $C(w)$ under the itinerary map is

$$
S^{-1}(C(w))=X_{s_{0}} \cap f^{-1}\left(X_{s_{1}}\right) \cap \cdots \cap\left(f^{k}\right)^{-1}\left(X_{s_{k}}\right) .
$$

Applications of symbolic dynamics

A more general construction is to take disjoint open sets $X_{\alpha}, \alpha \in \mathcal{A}$ that need not cover the entire set X. Then the itinerary map is defined on a subset of X consisting of all points whose orbits stay in the union of the sets X_{α}.

Alternatively, we can consider a partition into sets that are not open (but then the itinerary map will not be continuous at some points). Alternatively, we can allow the sets X_{α} to overlap (but then the itinerary map will not be uniquely defined at some points).

Examples

Any real number x is uniquely represented as $x=k+r$, where $k \in \mathbb{Z}$ and and $0 \leq r<1$. Then k is called the integer part of x and r is called the fractional part of x. Notation: $k=[x], r=\{x\}$.

Example. $f:[0,1) \rightarrow[0,1), f(x)=\{10 x\}$.
Consider a partition of the interval $[0,1)$ into 10 subintervals $X_{i}=\left[\frac{i}{10}, \frac{i+1}{10}\right), 0 \leq i \leq 9$. That is, $X_{0}=[0,0.1), X_{1}=[0.1,0.2), \ldots, X_{9}=[0.9,1)$.
Given a point $x \in[0,1)$, let $S(x)=\left(s_{0} s_{1} s_{2} \ldots\right)$ be the itinerary of x relative to that partition. Then $0 . s_{0} s_{1} s_{2} \ldots$ is the decimal expansion of the real number x.

Totally disconnected sets

Let X be a topological space and $E \subset X$. We say that points $x, y \in E$ are disconnected in E if there exist disjoint open sets $U_{x}, U_{y} \subset X$ such that $x \in U_{x}, y \in U_{y}$, and $E \subset U_{x} \cup U_{y}$. The set E is called connected if no points in E are disconnected. The set E is called totally disconnected if any two points of E are disconnected.

Suppose (X, d) is a metric space. The space X is called ultrametric (or non-Archimedean) if $d(x, y) \leq \max (d(x, z), d(z, y))$ for all $x, y, z \in X$.

Theorem Any ultrametric space is totally disconnected. Idea of the proof: In the ultrametric space, two balls $B_{\varepsilon}(x)$ and $B_{\varepsilon}(y)$ of the same radius are either disjoint or the same.

Theorem The space $\Sigma_{\mathcal{A}}$ of infinite sequences is ultrametric (and hence totally disconnected).

